
Subject: CRYPTO-BOX implementation into the source code with Smarx OS API
Version: Smarx OS PPK 8.14 and up, Smarx OS 4 Linux Package 1.22 and up, Smarx OS 4 Mac Package 2.49 and up
Last Update: 12 August 2024
Target Operating Systems: Windows, Linux, macOS, iOS, Android
Target Processor Platforms: Intel x64/x86, ARM 64/32
Access to source code needed (of protection application):  Yes  No
Supported Programming Tools: see chapter 5.1 in this document
Applicable for Product: CRYPTO-BOX® SC / XS / Versa

Implementation with API
The integration directly into the application source code using the Smarx®OS API unleashes the full power of
the CRYPTO-BOX® and provides the most flexible way to protect your software and data against piracy and
unauthorized usage.
This document describes how to get started with the API integration, and where to find the required libraries
and tools in our Protection Kit.
Even if you are working with the API integration already, or if you are planning to revise your API
implementations soon, this document will provide you with valuable information about the most recent
changes and give you useful tips and references.

CRYPTO-BOX® Key Features
• Quick and easy protection of Windows applications with AutoCrypt
• Individual implementations with API for all common programming

languages and platforms (Windows, Linux, macOS)
• Unique and stable metal case, also available with USB-C plug and in different

colors and customized product labeling.
• Network and remote update capability
• AES/Rijndael encryption on-chip
• RSA support on-chip (CRYPTO-BOX SC) or on driver level (CRYPTO-BOX XS/Versa
• The CRYPTO-BOX® is designed in Germany and manufactured in the European Union

(TAA compliant).
• Customization: Implementation of specific functions or algorithms in firmware on

request.

White Paper

API Implementation WP-1

Download the latest White Papers and Application Notes: www.marx.com/en/support/documents
White Paper – 0-20Sep011ks(WP01_API) Copyright © 2002, 2024 MARX® CryptoTech LP1

Order your CRYPTO-BOX Evaluation Kit now – or contact us for any questions

MARX Software Security GmbH MARX CryptoTech LP
Vohburger Strasse 68 489 South Hill Street
85104 Wackerstein, Germany Buford, GA 30518 U.S.A.
Phone: +49 (0) 8403 / 9295-0 Phone: (+1) 770 904 0369
contact-de@marx.com contact@marx.com

www.marx.com

https://www.marx.com/en/about-marx/contact
https://www.marx.com/en/products/cryptobox/try-now
https://www.marx.com/en/products/crypto-boxr-usb-c/2908800

Table of Contents
1. The meaning of “Implementation with API”..3

1.1. Overview...3
1.2. Automatic Protection and Implementation with API..3

2. Recommended Steps for Protecting Applications with API...3

3. Smarx®OS as Basis for the CRYPTO-BOX Integration..4
3.1. Overview...4
3.2. Smarx®OS API Subsets..4

3.2.1. Smarx®API..5
3.2.2. AC API...5
3.2.3. SmarxCpp...5
3.2.4. CBIOS4NET/Smarx4NET...6
3.2.5. CBIOS API...6
3.2.6. CBIOS Networking...6
3.2.7. DO API..6
3.2.8. RFP API...6
3.2.9. Extended API (XSMRX)..6
3.2.10. Smarx Cloud Security (WEB API)...6

4. Using the Smarx®OS API under Different Environments...6
4.1. Overview...6
4.2. Static Libraries (C/C++, Delphi)...7
4.3. Dynamic Libraries (DLL)..7
4.4. .NET..7

4.4.1. Smarx4NET...8
4.4.2. CBIOS4NET...8

4.5. COM/ActiveX...9

5. How to Find the Corresponding Library and Sample Code for Your Environment...9
5.1. Overview about Supported Environments..9
5.2. Obtaining the required Library/Samplecode from the Protection Kit..10

5.2.1. Windows..10
5.2.2. Linux...10
5.2.3. Mac (macOS/OS X)..11
5.2.4. iOS..11
5.2.5. Android...11

White Paper

API Implementation WP-1

Download the latest White Papers and Application Notes: www.marx.com/en/support/documents
White Paper – 0-20Sep011ks(WP01_API) Copyright © 2002, 2024 MARX® CryptoTech LP2

1. The meaning of “Implementation with API”

1.1. Overview
Hardware-based protection requires your protected applications and/or data files to have a corresponding
CRYPTO-BOX attached to the computer (or a computer within the network) in order to function normally. The
protected software will check for the presence of the CRYPTO-BOX. If the CRYPTO-BOX is not found, the
program can switch to a demo mode or even refuse to work (completely or partially, depending on your
protection strategy). If the CRYPTO-BOX is attached, the program will communicate with it, performing more
detailed verification of information stored in the CRYPTO-BOX, such as:
• Verification of serial number (BoxName) or Developer ID
• Using the hardware-based encryption engine to decrypt information during application run-time
• Querying license information from the internal memory of the CRYPTO-BOX during application run-time
All these, as well as many other unique CRYPTO-BOX features, can be used to build a reliable protection
strategy. Data can be encrypted using the CRYPTO-BOX internal on-board encryption. This approach
guarantees an extremely reliable protection model: Encrypted data files can be viewed only when a
corresponding CRYPTO-BOX is attached to the end user's computer. More limitations can be added, e.g.,
expiration dates: The end user will be able to use the software only until a defined date is reached. MARX
provides you with a convenient way to update such expiration dates remotely (see RUMS Application Notes
for more details).
Implementation with API means that all this functionality mentioned above can be added directly into the
source code of the application by using predefined API calls (see chapter 3.2 for details).

1.2. Automatic Protection and Implementation with API
When protecting your software with the CRYPTO-BOX, you have two basic choices:
• Automatic protection of your compiled executable - see separate AutoCrypt Application Notes for further

details.
• Implementation into the source code of your application through API.
Implementation into source code through the API is a feature targeted at developers who need maximum
security and flexibility for their applications. It provides a product-specific and highly efficient protection
strategy. For instance, you can integrate smart support for demo and full-product versions of the program,
online feature activation, remote update scenarios, and much more.

It is possible to combine both AutoCrypt and API implementation, for instance if you want to take
advantage of the encryption options offered by AutoCrypt. Or you can consider AC API which combines the
simplicity of AutoCypt with the flexibility of API implementation. This is especially helpful if your type of
application is not compatible with the AutoCrypt Wrapper. See chapter 3.2 for more details.

2. Recommended Steps for Protecting Applications with API
To protect your application with API, we recommend the following steps:

1. Make yourself familiar with our API (see chapter 3 and 4 in this document, and Smarx Compendium
chapter 10). Select your preferred API and check out the sample code for your environment (see
chapter 5.2) Now choose your own protection strategy.

2. Check our hints for secure implementation in the Smarx Compendium chapter 17 and the sample
code for secure implementation in the Smarx OS Protection Kit (PPK) which can help you to
significantly increase the protection level of your implementation:
[PPK root]\SmarxOS-Samples\Security\ProtectUPW
[PPK root]\SmarxOS-Samples\Security\.NetProtection (for .NET developers)

White Paper

API Implementation WP-1

Download the latest White Papers and Application Notes: www.marx.com/en/support/documents
White Paper – 0-20Sep011ks(WP01_API) Copyright © 2002, 2024 MARX® CryptoTech LP3



https://www.marx.com/en/support/documents
https://www.marx.com/en/support/documents#applicationnotes
https://www.marx.com/en/support/documents#applicationnotes

3. The easiest way to configure the CRYPTO-BOX with the protection and licensing setting required by
your protected application is the usage of the Smarx Application Framework (SxAF, see Smarx
Compendium chapter 4.5):
• Make sure that the Smarx OS PPK is installed on your computer. Start the “MARX PPK Control

Center” and go to “Quick Access” “SxAF”. →
• Create a new SxAF project and specify Implementation with API as project type.
• Choose the project-specific values for the CRYPTO-BOX, such as label and AES keys.
• Select your project's licensing strategy by defining one or more partitions to hold data objects with

licensing information, which can be expiration dates, counters, network licenses and/or customer
specific memory objects (see Smarx Compendium chapter 4.5.5 for further details).

• Use the “CB Format” option in SxAF to format your CRYPTO-BOX units with the project settings.
• Optionally, you can export your project settings into an XML file to use with command line based

tools for automated CRYPTO-BOX formatting (see Smarx Compendium chapter 4.9 for further
details).

4. If you plan to update your CRYPTO-BOX later at your end-user's site, you can create the Remote
Update Tool for this project and ship it together with the CRYPTO-BOX to your end-users (see Smarx
Compendium chapter 4.10.3 for more information).

5. Test all licensing options carefully.
6. Ship your protected application, along with the CRYPTO-BOX and supplemental files (drivers,

network server for network licensing if applicable). MARX provides an easy-to-use redistribution
setup. See our Application Notes “Driver Installation” for further instructions.

3. Smarx®OS as Basis for the CRYPTO-BOX Integration

3.1. Overview
Smarx®OS is the basic input-output system of the CRYPTO-BOX system. It is used for communication with
the CRYPTO-BOX within all components available in the Professional Protection Kit (PPK), such as:
• Libraries provided by MARX for API implementation
• Smarx Application Framework (SxAF)
• Command Line Tools

Smarx OS supports all popular platforms:
• Windows 64/32 bit
• Linux 64/32 bit, x86 and ARMv7/ARMv8)
• macOS (ARM64 and x86_64)
• Android (libraries/sample code can be provided on request, please contact us)
• Others - please contact us and provide your specs/requirements
Many programming environments (IDE’s) for these platforms are supported, see chapter 5 for more details.

3.2. Smarx®OS API Subsets
Smarx OS consists of several APIs providing a different subset of functionality. Not all API subsets are
available for each platform/compiler.
The following tables provides an overview about available Smarx OS APIs for the CRYPTO-BOX system:

White Paper

API Implementation WP-1

Download the latest White Papers and Application Notes: www.marx.com/en/support/documents
White Paper – 0-20Sep011ks(WP01_API) Copyright © 2002, 2024 MARX® CryptoTech LP4

https://www.marx.com/en/about-marx/contact
https://www.marx.com/en/products/professional-protection-kit/117
https://www.marx.com/en/support/documents#applicationnotes
https://www.marx.com/en/support/documents
https://www.marx.com/en/support/documents

Smarx®OS Interface Platform Language Environment
Smarx API
Simple protection API with
SxAF projects

Windows, Linux,
macOS,
Android, iOS (*)

C++ 11, C# 4.0+, Delphi, VB,
Python, Cocoa

MSVS 2013+, gcc 5.4+,
Xcode 9+, Embarcadero
Delphi 10+, Python
3.8/3.9AC API (**)

Simple automatic protection
API with SxAF/AutoCrypt
Wizard projects
CBIOS API, DO API
Advanced protection API

Windows, Linux,
macOS,
Android, iOS

C#, F#, C/C++, Java, Delphi,
VB, VBA, Swift, LabVIEW,
MATLAB, VFP, Scala, DMD,
IVFortran, DarkBASIC,
REALbasic

MSVS 6+, Builder 6+,
Delphi 5+, gcc 4+, Xcode
9+ and others

RUMS API
Simple remote update API
with SxAF projects

Windows, Linux,
macOS,
Android, iOS (*)

C/C++, Delphi MSVS 6+, Builder 6+,
Delphi 5+

RFP API
Advanced remote update API

Windows, Linux,
macOS

C#, C/C++, Delphi, VB MSVS 6+, Builder 6+,
Delphi 6+, Xcode 10+

* Windows, Linux (Intel/ARM) and macOS (Intel/ARM) platforms are supported now, other platforms can be supported on request.
** AC API is a part of Smarx API

See chapter 5.2 in this document for information on obtaining libraries and sample code for your
preferred interface.

3.2.1. Smarx®API
This is a high level API layer for the CRYPTO-BOX SC, XS and Versa models which exposes a more simple and
user friendly programming interface to developers than other Smarx OS based APIs (CBIOS, see below).
Please refer to the Smarx Compendium chapter 11 for more details about the Smarx API.

3.2.2. AC API
The AC API (Smarx AC) introduces a higher abstract layer allowing developer with only one function call
implemented into the source code of his application to:
• Start periodic validation of the license information stored in the CRYPTO-BOX (e.g. expiration date,

counters, etc.) for both local and network scenarios
• Add exit event notification (AppExitEvent) with exception argument
AC API supports C/C++ (Visual Studio 2013/gcc 6.0/Xcode 9 and higher), C# (Visual Studio 2013 and
higher), Delphi (Embarcadero Delphi 10 and higher), Python (3.8 and 3.9 on x86_64 platforms) under
Windows, Linux and macOS. Licenses for AC API can be defined with AutoCrypt Wizard or SmrxProg
command line tool. Further details can be found in the Readme file in the corresponding AC API sample
folder (see chapter 5.2).

3.2.3. SmarxCpp
This is an object oriented implementation of CBIOS (Networking)/DO APIs mentioned below for C++
developers (MS Visual Studio 2013/gcc 5.4/Xcode 9 or higher). Refer to the Smarx Compendium chapter
10.13 for details.

White Paper

API Implementation WP-1

Download the latest White Papers and Application Notes: www.marx.com/en/support/documents
White Paper – 0-20Sep011ks(WP01_API) Copyright © 2002, 2024 MARX® CryptoTech LP5



https://www.marx.com/en/support/documents
https://www.marx.com/en/support/documents

3.2.4. CBIOS4NET/Smarx4NET
This is an object oriented, components based implementation of CBIOS (Networking)/DO/RFP APIs
mentioned below for .NET developers (C#, VB.NET etc. for .NET Framework or .NET Core). Please refer to
the Smarx Compendium chapter 10.13.2 for more details.

3.2.5. CBIOS API
This is the basic API for the CRYPTO-BOX SC, XS and Versa models. It includes functions for CRYPTO-BOX
search and identification, access to its internal memory and encryption functions.
Please refer to the Smarx Compendium chapter 12 for more details about the CBIOS API.

3.2.6. CBIOS Networking
A special subset of the CBIOS API allowing access the CRYPTO-BOX on networks and perform network
licensing - defining a number of running instances of the protected application to be run in a network. Please
refer to our White Paper “Network Licensing” for more information about accessing the CRYPTO-BOX in
networks.

3.2.7. DO API
The Data Objects (DO) API is a subset of the CBIOS API which provides a convenient way to create and
access various objects for licensing purposes, such as expiration dates, counters, passwords or self-defined
objects.
Please refer to the Smarx Compendium, chapter 14 for more details.

3.2.8. RFP API
The Remote Update API allows to update the CRYPTO-BOX directly on the end-user side. It is intended for
customers who prefer API integration instead of using tools provided by MARX (RUMS component in SxAF or
"RU_Tool.exe" command line tool, see separate RUMS Application Notes for details).
Please refer to the Smarx Compendium, chapter 15 for more information on the Remote Update technology.

3.2.9. Extended API (XSMRX)
Provides CRYPTO-BOX formatting features for customers who prefer API integration instead of using tools
provided by MARX (SxAF or "SmrxProg.exe" command line tool).
Please refer to the Smarx Compendium, chapter 16 for more details.

3.2.10. Smarx Cloud Security (WEB API)
Authenticate users via Internet/Intranet and update the CRYPTO-BOX. Ideal for online licensing and
subscription services.
For detailed description and Developer's Guide, see the Smarx Cloud Security White Paper.

4. Using the Smarx®OS API under Different Environments

4.1. Overview
Depending on the platform (OS) and programming environment used, the Smarx OS API libraries are
provided in different formats, such as:
• Static libraries
• Dynamic libraries (DLL)
• .NET assembly (Managed DLL)
• COM/ActiveX
• Native DLL/SO

White Paper

API Implementation WP-1

Download the latest White Papers and Application Notes: www.marx.com/en/support/documents
White Paper – 0-20Sep011ks(WP01_API) Copyright © 2002, 2024 MARX® CryptoTech LP6

https://www.marx.com/en/support/documents
https://www.marx.com/en/support/documents#whitepapers
https://www.marx.com/en/support/documents#applicationnotes
https://www.marx.com/en/support/documents
https://www.marx.com/en/support/documents
https://www.marx.com/en/support/documents
https://www.marx.com/en/support/documents#whitepapers
https://www.marx.com/en/support/documents
https://www.marx.com/en/support/documents

For an introduction into accessing the CRYPTO-BOX via API, we strongly recommend you to read the
Smarx Compendium chapter 10.

4.2. Static Libraries (C/C++, Delphi)
Static libraries are the most secure way of linkage. They are provided for most of the supported programming
environments under Windows, Linux and macOS platforms, including: Microsoft C/C++, Borland C Builder,
Delphi environments, and GCC.
If you are working with Visual Studio 2013 and later or Delphi 10.1 and later, you can consider using our high
level Smarx API (see chapter 3.2.1 or SmarxCpp (see chapter 3.2.3).

See the Smarx Compendium chapter 11 for a description of the Smarx API.

If you are using other or older environments, or you don’t want to use Smarx API: many environments are
supported by the CBIOS (Networking)/DO/RFP API (see chapter 3.2.5 to 3.2.8).

• See Smarx Compendium chapter 12 for an introduction to the CBIOS API and implementation details.
• See Smarx Compendium chapter 13 for details on CBIOS Networking.
• See Smarx Compendium chapter 14 for details on the DO API.
• See Smarx Compendium chapter 15 for details on the RFP (Remote Update) API.

4.3. Dynamic Libraries (DLL)
Dynamic libraries (DLLs) allow easy, but less secure linkage. DLL based implementation should be
considered only if for some reason no other options can be used (static library, COM). When using DLL try to
improve the level of protection and licensing logic for your application (using hardware based encryption,
keeping vital data in the CRYPTO-BOX, using parallel threads, etc.), making it difficult to emulate this logic by
replacing the DLL. DLLs are provided for Windows (x64 and x86).

The Smarx OS CBIOS API Reference contains a detailed description of the API calls within the CBIOS API
and the CBIOS Network API (see chapter 3.2.5 and 3.2.6) for developers working with Visual Basic.

4.4. .NET
MARX provides .NET developers with an object oriented, component based approach, simplifying integration
of protection and licensing to .NET applications. C# programming community got used to object oriented
component based way of software development (main benefit of .NET).

If you are working with Visual Studio 2013 and later, you can consider using our high level Smarx API (see
chapter 3.2.1 which is based on CBIOS4NET. See Smarx Compendium chapter 11 for a description of the
Smarx API.

If using old environment (Visual Studio <2013) or customer specific protection and licensing logic is
required, then consider using CBIOS+DO API, rather than Smarx API. CBIOS+DO API is available for .NET
developers in Smarx4Net or CBIOS4NET assemblies. See the “.NET interfaces for developers” table on the
next page for more details.
Both interfaces combine all Smarx programming interfaces under one roof for .NET platform:
• CBIOS (network mode)
• DO API (including CDO support)
• RU API (Remote Update API)

They cover the following types of MARX hardware:

White Paper

API Implementation WP-1

Download the latest White Papers and Application Notes: www.marx.com/en/support/documents
White Paper – 0-20Sep011ks(WP01_API) Copyright © 2002, 2024 MARX® CryptoTech LP7











https://www.marx.com/en/support/documents
https://www.marx.com/en/support/documents
https://www.marx.com/en/support/documents#whitepapers
https://www.marx.com/en/support/documents
http://www.marx.com/support-manuals

• CRYPTO-BOX® SC (CBU SC)
• CRYPTO-BOX® XS and Versa (CBU)
The CBIOS4NET/Smarx4NET API Reference contains an introduction into CBIOS4NET/Smarx4NET and a
detailed description of its Classes.

This table provides an overview about .NET interfaces for developers:

IDE .NET Local
& Net
Mode

Plat
form

Additional
Redistribu

table **

PPK
Assembly

\SDK Path MSI / MSM
(Redistributable)

MS VS
2013+

4.5.1+ * Any CPU - Smarx4Net.dll \dotNET 4.5\Any CPU \SMARX4NET\
SMARX4NET.msi
SMARX4NETMergeModule
.msm

Smarx4
NetCore

2.1+

Smarx4NetCore.
dll

\dotNET Core\Any CPU -

4.x + x86, x64

(for .NET 2.0-
3.5, a

platform
specific
loader

CBIOSLoader
.cs is

required)

VC Redist 2013 CBIOS4NET.dll \dotNET 4\x86\signed
\dotNET 4\x64\signed

\CBIOS4NET\
CBIOS4NET_x86.msi,
CBIOS4NET_x86_x64.msi
CBIOS4NetMergeModule.
msm

VC Redist 2010 \dotNET 4\Obsolete\x86
\dotNET 4\Obsolete\x64

\Obsolete\CBIOS4NET\
CBIOS4NET_x86.msi,
CBIOS4NET_x86_x64.msi
CBIOS4NetMergeModule.
msm

2.0 - 3.5 VC Redist 2005 CBIOS4NET.dll
CBIOS4NET64.dll

\dotNET 2\asm signed

MS VS
2010 -
2012

4.x VC Redist 2010 CBIOS4NET.dll \dotNET 4\Obsolete\x86
\dotNET 4\Obsolete\x64

2.0-3.5 VC Redist 2005 CBIOS4NET.dll
CBIOS4NET64.dll

\dotNET 2\asm signed

MS VS
2005 -
2008

* Smarx4Net requires CBIOS Network Server for both local and network mode
** Included to MSI/MSM

The following two chapters explain the differences between Smarx4NET and CBIOS4NET.

4.4.1. Smarx4NET
Compared to the legacy CBIOS4NET interface (the corner stone of Smarx4NET, see chapter 4.4.2), the new
Smarx4NET is based on fully managed code which makes the implementation more flexible. There is no need
for VC Redistributables anymore.
It supports standard C# applications as well as .NET Core applications, and is ideal for protecting multi-
device, multi-platform applications for desktop and mobile usage. Smarx4NET runs in network mode, which
requires an installation of the CBIOS Server (either on the same computer or in the network). See our White
Paper “Network Licensing” and the CBIOS Server readme file for installation instructions.
A Smarx4NET package which contains documentation, libraries and sample code can be found in our
Download section. Please refer to the included readme file for the latest information and updates.

4.4.2. CBIOS4NET
CBIOS4NET was the first interface for C# developers. The CBIOS4NET assemblies are based on unmanaged
code which requires installation of corresponding Visual C/C++ Redistributable components. Furthermore, a
Loader is required to load platform specific CBIOS4NET components (32 or 64Bit).
CBIOS4NET allows direct access to the CRYPTO-BOX on the local USB port (Smarx4NET too, but the CBIOS
Network Server needs to be installed and running on the same computer).

White Paper

API Implementation WP-1

Download the latest White Papers and Application Notes: www.marx.com/en/support/documents
White Paper – 0-20Sep011ks(WP01_API) Copyright © 2002, 2024 MARX® CryptoTech LP8



https://www.marx.com/en/support/downloads
https://www.marx.com/en/support/downloads#networktools
https://www.marx.com/en/support/documents#whitepapers
https://www.marx.com/en/support/documents#whitepapers

If you are starting a new project, we recommend to use Smarx4NET because it offers more flexibility
such as AnyCPU support and pure managed code, as well as .NET Core support.
If you are already using CBIOS4NET or need direct access to local USB port, you can stick with
CBIOS4NET. If you want to switch to Smarx4NET, slightly refactoring of your code is required, plus
using network mode instead of local mode. More details can be found in chapter 4 of the readme file
in the Smarx4NET package.

4.5. COM/ActiveX
COM/ActiveX is the Windows platform specific interface standard. This interface format is universal and can
be used from almost any Windows programming environment. Required Smarx OS ActiveX objects are
installed and properly registered by our driver setup utility (CBUSetup.exe, see separate Application Notes
“Driver Installation”).
Native DLL/native SO are specific to Java environment (Windows and Linux correspondingly).

5. How to Find the Corresponding Library and Sample Code for Your Environment
5.1. Overview about Supported Environments
The following table contains programming environments currently supported by Smarx®OS APIs:
Smarx®OS
library

Target audience Smarx OS
Interfaces

Platform Language Environment

SmarxCPP static
library

If you develop apps in C++ 11,
you can use:
1. AC API – implement
protection with only one
function call

2. Smarx API - validate license
with only one call using higher
abstract layer (see ch. 4.2)

3. SmarxCPP - develop your
licensing model with
enhanced C++ classes

Smarx API,
AC API, RUMS*,
CBIOS, DO API

Win, Linux,
macOS,
Android*,
iOS*

C++ 11 MSVS 2013+,
gcc 6.0+,
Xcode 9+,
QT 5+

Smarx API
dynamic library

For Delphi, VB and Python Smarx API Win, Linux,
macOS

VB, Delphi,
Python

MSVS 2013+,
Embarcadero
Delphi 10+,
Python 3.8/3.9

CBIOS static
library

For C/C++, Delphi, Swift,
COBOL, MATLAB, IVFortran
developers

CBIOS, DO,
RUMS API

Win, Linux,
macOS,
Android, iOS

C/C++, Delphi,
Swift, COBOL,
MATLAB,
IVFortran

MSVS 6+, Builder
6+, Delphi 5+,
gcc 4+, Xcode 4+
and others

CBIOS dynamic
library

For: LabVIEW, VFP, DMD,
DarkBASIC, REALbasic
developers

CBIOS, DO API Win, Linux,
macOS

LabView, VFP,
DMD,
DarkBasic,
REALbasic

*

CBIOS4NET
assembly

For .NET developers
See chapter 4.4 for details
and differences between
Smarx4Net and CBIOS4NET
Note: Smarx API (Higher
abstract layer) is
implemented only for
CBIOS4NET

Smarx, *RUMS,
CBIOS, DO,
RFP, DP API

Win x64/x86 C#, VB,
C++.NET

.Net Framework,
MSVS2005+

Smarx4Net /
Smarx4NETCore
assembly

CBIOS, DO,
RUMS API

Any CPU C#, VB,
C++.NET

.NET Framework
4.5+(Smarx4NET)
.NET6.0+
(Smarx4NETCore)

JNI CBIOS
dynamic library

It is for Java, Scala developers CBIOS, DO API Win, Linux,
macOS

Java, Scala Java 6+ SDK,
Eclipse SDK 3.7+

White Paper

API Implementation WP-1

Download the latest White Papers and Application Notes: www.marx.com/en/support/documents
White Paper – 0-20Sep011ks(WP01_API) Copyright © 2002, 2024 MARX® CryptoTech LP9



https://www.marx.com/en/support/downloads
https://www.marx.com/en/support/documents#applicationnotes

Smrxw COM
library

Obsolete COM model. To be
considered for VBA
development only

CBIOS, DO API Win (Any) VBA, C#,
VB,
C++.NET,
Delphi

*

RFP static
library

RFP API allows to update the
CRYPTO-BOX directly on the
end-user side. In contrast to
RUMS (see chapter 3.2) it
provides maximum flexibility.
Available for C/C++ and
Delphi only.

RFP API Win, Linux C/C++ MSVS 6+, gcc 4+

RFP dynamic
library

Win Delphi Delphi 6+

Smarx®OS Data
Protection

If you distribute your software
together with sensitive and
valuable data files, you will
require reliable protection not
only for your app itself but
also for the data files used by
your app.

DP API Win C#, Delphi MSVS 2005+,
Delphi 7+

+ - and higher
* - Can be implemented upon request

5.2. Obtaining the required Library/Samplecode from the Protection Kit
All libraries and samples for the supported environments can be found in the Smarx OS Protection Kit (PPK),
which will be delivered together with the CRYPTO-BOX Evaluation Kit or with the first CRYPTO-BOX order you
received from MARX.
In all Smarx OS API packages (for Windows, Linux and macOS) there are 2 folder: /sdk and /samples.
Take the sample code from the "Samples" section and select the corresponding libraries for your
compiler version from the "SDK” (libraries) section to make sure to have the correct library version
for your compiler version! Refer to the included readme files for detailed information and
implementation hints!
Please contact us if you need libraries or sample code for environments which are not listed in the
Protection Kit.

5.2.1. Windows
First, you need to install the latest Smarx OS Protection Kit (PPK) which is available at marx.com Support →

 → Downloads (MyMARX account and a valid Support Option are required). After the installation has finished,
click on the “PPK Control Center” shortcut on your desktop. The Control Center provides an overview of the
installed PPK components, including a brief introduction and links to the components.
Click on the "Implementation with API" button, then on “Libraries/Samples”. For Windows there are two
options:
a) Windows Libraries
Here you can select the required library for your platform. This library needs to be implemented into your
project.
b) Windows Samples
Here you will find the sample code for your compiler which demonstrates the available API calls. These
samples are a good starting point to get familiar with the Smarx API. For different API subsets (e.g. CBIOS
and DO, see chapter 3.2 for more details) there may be different samples available.

5.2.2. Linux
The “Smarx OS 4 Linux” package which includes libraries and sample code for the supported Linux based
environments (see chapter 5.1) can be downloaded at marx.com Support → → Downloads (MyMARX
account and valid support option is required to download it). Please refer to the included readme file for

White Paper

API Implementation WP-1

Download the latest White Papers and Application Notes: www.marx.com/en/support/documents
White Paper – 0-20Sep011ks(WP01_API) Copyright © 2002, 2024 MARX® CryptoTech LP10



https://www.marx.com/en/support/downloads
https://www.marx.com/en/support/downloads
https://www.marx.com/en/support/support-level-options
https://www.marx.com/en/support/contact

further details.

The Smarx Compendium, chapter 10.6 provides an introduction on Linux support.

5.2.3. Mac (macOS/OS X)
The “Smarx OS 4 Mac” package includes libraries and sample code for the supported Mac environments
(see chapter 5.1). The package can be downloaded at https://www.marx.com/downloads (MyMARX account
and valid support option is required to download it). Please refer to the included readme file for further
details.

The Smarx Compendium, chapter 10.7 provides an introduction on Mac support.

5.2.4. iOS
The Smarx OS package for iOS contains the CBIOS Network Client for iOS. The sample code demonstrates
interaction with a remote CBIOS Server over the network from iOS devices.

For more information on using the CRYPTO-BOX in networks, please read chapter 6 in the
Smarx Compendium.

Please contact us to get iOS sample code.

5.2.5. Android
The Smarx OS package for Android contains libraries and a sample application demonstrating how to access
the CRYPTO-BOX under Android in network or local mode. In network mode, it allows to query a
CRYPTO-BOX which is connected to a remote CBIOS Server. For local access, a customized implementation
of the USB stack based on libusb library is used. This requires root access on the Android device. Android
SDK and Eclipse IDE are required.
Samples for both network and local mode can be provided on request. Please contact us for libraries and
source code.

White Paper

API Implementation WP-1

Download the latest White Papers and Application Notes: www.marx.com/en/support/documents
White Paper – 0-20Sep011ks(WP01_API) Copyright © 2002, 2024 MARX® CryptoTech LP11







https://www.marx.com/en/about-marx/contact
https://www.marx.com/en/support/documents
https://www.marx.com/en/support/documents
https://www.marx.com/en/about#Address
https://www.marx.com/downloads

	1. The meaning of “Implementation with API”
	1.1. Overview
	1.2. Automatic Protection and Implementation with API

	2. Recommended Steps for Protecting Applications with API
	3. Smarx®OS as Basis for the CRYPTO-BOX Integration
	3.1. Overview
	3.2. Smarx®OS API Subsets
	3.2.1. Smarx®API
	3.2.2. AC API
	3.2.3. SmarxCpp
	3.2.4. CBIOS4NET/Smarx4NET
	3.2.5. CBIOS API
	3.2.6. CBIOS Networking
	3.2.7. DO API
	3.2.8. RFP API
	3.2.9. Extended API (XSMRX)
	3.2.10. Smarx Cloud Security (WEB API)

	4. Using the Smarx®OS API under Different Environments
	4.1. Overview
	4.2. Static Libraries (C/C++, Delphi)
	4.3. Dynamic Libraries (DLL)
	4.4. .NET
	4.4.1. Smarx4NET
	4.4.2. CBIOS4NET

	4.5. COM/ActiveX

	5. How to Find the Corresponding Library and Sample Code for Your Environment
	5.1. Overview about Supported Environments
	5.2. Obtaining the required Library/Samplecode from the Protection Kit
	5.2.1. Windows
	5.2.2. Linux
	5.2.3. Mac (macOS/OS X)
	5.2.4. iOS
	5.2.5. Android

