
20242024
EDITION

0-
27
N
ov
12
sa
(S
m
ar
xM

an
_C

ov
er
).
ps
d

Smarx® Compendium

www.marx.com

 2

We highly appreciate and value your comments and suggestions!

Suggestions for improvements will be honored with:

• Free Business Support for 6 months
• Enrollment in our BETA-Tester program

Software security is a growing challenge and requires constant improving - be part of the
process!

Please send sugestions and error report to:

• PPK, software/hardware in general and documentation (including this Compendium):

support@marx.com

• WEB and online ordering system related:

webmaster@marx.com

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

 3

Table of Contents
1. What is this Compendium About?...8

1.1. Introduction...8
1.2. What is New?.. 8
1.3. What to Find Where in this Compendium...9
1.4. Professional Software Protection Secures Revenue...9
1.5. The CRYPTO-BOX®Hardware...10

1.5.1. CRYPTO-BOX Models...11
1.5.2. Technical Features of the CRYPTO-BOX®...11

2. Protection and Licensing Options...12
2.1. Overview.. 12
2.2. Automatic Protection and Implementation With API..12
2.3. Benefits of the Smarx®OS Application Framework..12
2.4. Automatic Protection With AutoCrypt...13
2.5. Implementation Into Source Code with API...14
2.6. Software and Data Licensing...14
2.7. Network License Management..15
2.8. Maintenance of Protected Applications Using Remote Update............................16

3. Starting with the Professional Protection Kit (PPK)...18
3.1. Installation... 18

3.1.1. Windows... 18
3.1.2. Linux..19
3.1.3. macOS... 19

3.2. How to Start... 19

4. Smarx®OS Application Framework...20
4.1. Overview.. 21
4.2. Steps and Processes of Software/Document Protection.......................................21
4.3. Smarx®OS Application Framework – First Start...22
4.4. Automatic Software Protection with AutoCrypt..23

4.4.1. Overview...23
4.4.2. AutoCrypt Wizard, AutoCrypt SxAF, AutoCrypt Command Line.....................23

4.5. Using Smarx®OS Application Framework for API Implementation........................24
4.5.1. Steps for Protecting Applications with API...24
4.5.2. Creating, Deleting and Selecting projects..24
4.5.3. General Project Settings..25
4.5.4. Adding Partitions to the Project...27
4.5.5. Defining Data Objects...28
4.5.6. Export of Data Objects Map and Smarx®API License File.............................31

4.6. Document Protection... 31
4.6.1. Steps for Protecting Digital Documents...31
4.6.2. Creating a New Project or Selecting Existing Projects...................................32
4.6.3. General Project Settings..33
4.6.4. Creating a Document Group..33
4.6.5. Adding Documents to the Group...34
4.6.6. Protect Documents...37

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

 4

4.6.7. PDF Viewer... 37
4.7. Product Editions... 37
4.8. Generating XML Script for Use with Command Line Tools....................................38
4.9. CRYPTO-BOX®Format: Configuring and Programming..38

4.9.1. Selecting Projects to Format...39
4.9.2. Formatting CRYPTO-BOX Modules..39
4.9.3. Creating Remote Update Utility...41

4.10. End-User Management...41

5. Network License Management...42
5.1. Introduction...42

6. Updating Licenses Remotely..43
6.1. Remote Update Management System - RUMS..43
6.2. Online License Management - OLM...43

6.2.1. Introduction..43
6.2.2. How Does it Work ?...43
6.2.3. Client-Side Requirements...44
6.2.4. Server-Side Requirements..44
6.2.5. License Update Scripts Generation...45
6.2.6. OLM Evaluation Demo...46

7. Command Line Utilities.. 50
7.1. Introduction...50
7.2. AutoCrypt - Command Line Version..50
7.3. Document Protection - Command Line Version...51
7.4. SmrxProg - Command Line Based CRYPTO-BOX Formatting...............................52
7.5. RU_Tool - Command Line Utility for Remote Update Management......................53

7.5.1. Overview...53

8. Distributing Your Software..54
8.1. Installing CRYPTO-BOX Support on the Target System..54
8.2. CRYPTO-BOX Network Server Installation...54
8.3. Document Protection PDF Viewer Installation...54
8.4. Smarx Cloud Security and OLM Client Component..55

9. Troubleshooting with MARX® Analyzer...56
9.1. Introduction...56
9.2. Features...56
9.3. Using MARX® Analyzer... 56

9.3.1. Standard or Extended Diagnostic (Hardware Profile required)......................56
9.3.2. Network Diagnostic...57
9.3.3. Diagnostics Results...57
9.3.4. Report Generation.. 58

10. Smarx®OS API for Developers..59
10.1. Overview.. 59
10.2. Sharing CRYPTO-BOX® Memory Between Different Applications.......................61
10.3. Access to One CRYPTO-BOX for Different Processes/Threads...........................63
10.4. Caching CRYPTO-BOX Calls...63
10.5. CRYPTO-BOX Plug In/Plug Out Notifications...63

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

 5

10.6. MARX Digital Signature.. 64
10.7. Establishing Secure Communication Channel, Document Submission, Remote
Update... 64
10.8. Symmetric Encryption (AES/Rijndael)...64
10.9. Asymmetric (RSA) Encryption...65
10.10. CRYPTO-BOX®SC Specific Functions..67

10.10.1. Compatibility of CRYPTO-BOX XS/Versa and CRYPTO-BOX SC................67
10.10.2. CRYPTO-BOX SC AES Encryption Extension..67
10.10.3. Using Hardware Based RSA of the CRYPTO-BOX SC...............................68

10.11. Smarx®OS API: Local and Network Modes..68
10.12. Using Smarx®OS Under Different Platforms..69

10.12.1. Overview..69
10.12.2. Table of available Smarx®OS Libraries...69

10.13. Supported Environments: Windows...70
10.13.1. Microsoft Visual C/C++ 6.x and up...70
10.13.2. Microsoft .NET Platform..71
10.13.3. Microsoft Visual Basic 6.x...73
10.13.4. Borland C/C++ CBuilder 5,6, BDS 2006, RAD Studio 2007 and up...........73
10.13.5. Embarcadero Delphi 5 and up...73
10.13.6. Java (Sun JDK 1.6 and up)..74
10.13.7. Qt/MinGW...75

10.14. Supported Environments: Linux..75
10.14.1. Installing CRYPTO-BOX Support Under Linux..75
10.14.2. GCC...76
10.14.3. Qt... 76
10.14.4. Java (Sun JDK 1.6)...76

10.15. Supported Environments: macOS...77
10.15.1. macOS CBIOS Framework..77
10.15.2. macOS CBIOS Static Library...77
10.15.3. Java (Sun JDK 1.6 and Higher)..78
10.15.4. Qt... 79

10.16. Supported Environments: iOS... 79
10.17. Supported Environments: Android..79

11. Smarx®API – High Level API for Developers...80
11.1. Overview – What is Smarx®API?..80
11.2. Smarx®API License File and License ID...80
11.3. SmarxLicense class and its common methods...81

11.3.1. C# Implementation...81
11.3.2. C++ Implementation...82

11.4. Smarx®API: Quick Evaluation Scenario...82

12. Smarx®OS CBIOS API..84
12.1. Overview.. 84
12.2. CBIOS API Main Calls (cbios.h)...84

12.2.1. Smarx OS System Brackets...84
12.2.2. Using CBIOS from within DLL..85

12.3. CRYPTO-BOX Plug In/Out Notifications...85
12.4. Getting Information About Attached Hardware...86

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

 6

12.5. Opening the CRYPTO-BOX®..87
12.6. Accessing CRYPTO-BOX® Partitions...88
12.7. Sharing CRYPTO-BOX Between Different Applications, Lock/Unlock Logic........88
12.8. Attaching/Detaching CRYPTO-BOX...90
12.9. Working With the Open CRYPTO-BOX®..90

12.9.1. Overview..90
12.9.2. Logging Into a CRYPTO-BOX...92
12.9.3. Protection Against Terminal Sessions..92
12.9.4. Read/Write CRYPTO-BOX Memory..92
12.9.5. Using Symmetric Encryption...93
12.9.6. Asymmetric RSA Encryption...93
12.9.7. MD5 Hash Encryption...94

12.10. CBIOS API Description... 94

13. Smarx®OS Networking: CBIOS on the Network...94
13.1. General Issues.. 94
13.2. Network CBIOS API Calls..94

14. Smarx®OS DataObjects API..95
14.1. Concept: What is Smarx®OS DO API? Why DataObjects?...................................95
14.2. Smarx®OS DataObject Types..95

14.2.1. Network Binding Support..102
14.2.2. File with Hardware Binding Data...102

14.3. Set of Data Objects...102
14.4. Accessing DataObjects from Applications...103
14.5. Creating DataObjects Map: Import/Export...103
14.6. Smarx®OS Data Object API Calls...104

15. Smarx®OS Remote Update Technology..105
15.1. What is Smarx®OS Remote Update API? How Can It Be Used?.........................105
15.2. Brief Description of Remote Update API...105
15.3. How to Initiate Remote Update Request on the End-user Side?.......................108
15.4. How to Generate Remote Update Code on Software Vendor Side....................108
15.5. How to Activate Remote Update Code on End-User Side.................................110
15.6. Remote Update API Calls...110

16. Extended Smarx®OS API Calls – CRYPTO-BOX® Reconfiguration............................111
16.1. General Issues..111
16.2. CRYPTO-BOX Configuration Scenario...112
16.3. Extended Smarx®OS API Calls (In Detail)..113

17. Professional Software Protection..118
17.1. Important Rules for Professional Software Protection......................................118
17.2. Tips for Protection Against Debugging..122
17.3. Protection against Disassembling...124
17.4. .NET Specific Protection...126
17.5. Sample Code.. 127

18. Appendix A: Technical Data...128

19. Appendix B: Support & Collaboration with Customers...129

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

 7

20. Appendix C: Distributors.. 131

21. Appendix D: Glossary... 132

22. Appendix E: Trademarks..137

23. Appendix F: License Agreement...138

24. Appendix G: Notice to Users..140
24.1. General Information...140
24.2. Electrostatic Discharge (ESD) Precautions..140
24.3. Further Handling Precautions for MARX Hardware..140

25. Appendix H: Declaration of Conformity Statements..141

26. Alphabetical Index... 142

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

1. What is this Compendium About? 8

1. What is this Compendium About?

1.1. Introduction
This Compendium illustrates licensing model choices for software and content protection with
the CRYPTO-BOX. You will be able to choose between different implementation scenarios,
from the simplest automatic application protection (requiring no programming) to highly
sophisticated, customized implementation with Smarx OS API calls.

Learn how multiple applications can be protected with one CRYPTO-BOX, on a local PC or in a
network environment. Or take advantage of the latest encryption and anti-debugging
features, which allow you to store licensing information securely in the CRYPTO-BOX.

1.2. What is New?
The following are some of the latest features included in the Smarx OS Professional
Protection Kit:

AutoCrypt Wizard
The new AutoCrypt Wizard makes protection of your Windows .EXE or DLL files even more
easy! The Wizard guides you through each step of protection, licensing and CRYPTO-BOX
configuration for quick results. You may also export the project for usage with the Smarx
Application Framework providing you with some advanced licensing options, including project
and user management, or with our command line tools. See chapter 4.4 for details.

Smarx API: Simplified Implementation
The new Smarx API is a high level API for software developers looking for manual integration
of customer specific protection and licensing logic into their products. Smarx API exposes
simple and user friendly programming interface, significantly reducing implementation efforts
compared to existing CRYPTO-BOX interfaces. See chapter 11 for details.

Revised LabVIEW Package
A special package for LabVIEW users includes cross-platform support (Win and macOS) and a
prototype application with AutoCrypt-like licensing logic for quick and easy implementation to
existing LabVIEW projects.

Support for New Compilers and Programming Languages
Support for all common programming languages under Windows, Linux and macOS.
See chapter 10.12 for a detailed table of supported environments. We are updating our
Development Kit regularly to ensure support for the latest compiler versions and new
programming languages. The latest table of supported environments can be found in the
Control Center in the section "Implementation with API" “Libraries/Samples” (available →
after installation of the Smarx OS Protection Kit, see chapter 3.1).

Binding Software Licenses to a Particular Computer
A new feature is the ability to bind the protected software to a specific computer. For
example, this can be beneficial if the use of the protected software outside the company is

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

1. What is this Compendium About? 9

not desired. The Protection Kit contains libraries and sample code for C++ and C#
demonstrating the binding technology. More details can be found in chapter 14.2.

1.3. What to Find Where in this Compendium

Task Remarks Page
How To Start How to start with the protection of your digital assets. 18
Automatic Protection Instant protection of Windows applications in 10

minutes without requiring the source code (see also
separate AutoCrypt Application Notes)

23

Implementation with
API into Source Code

Implementation of the CRYPTO-BOX into the source
code using API calls for Windows, Linux and OS X

24

Document Protection Secure distribution of documents 31
Remote Update Update licensing options after your software is in the

field
43

Network License
Management

Limit the number of running application instances
(seats) in a network with only one CRYPTO-BOX

42

Online License
Management

Automated distributions of updates, identify all users
visiting your web portal

43

Important hints and warnings are marked using these symbols:

 Hint Attention Warning

1.4. Professional Software Protection Secures Revenue
The CRYPTO-BOX – Your Guide in Insecure Markets
Software and data protection ensure that every end user has paid for your product. As you
are aware, written agreements and licenses do not always prevent unauthorized use, and
enforcing them can create an antagonistic relationship with your end users.

Many violators of copyright and license agreements don’t think they are doing anything wrong
or illegal, yet most would never steal merchandise from a store.

We’ve heard all the justifications, including:
• It’s only a private backup!
• I will purchase the software later.
• I got it as a free download from the Internet.
• I don’t ask for money for my copies, so it’s okay.
• Everyone does it.
• This application is way too expensive!
• It’s from my company computer. They paid for it.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

https://www.marx.com/en/support/documents#applicationnotes

1. What is this Compendium About? 10

• I’ve already paid a lot for a single license. Why should I pay more for use in my network?
• It’s from a large company - they don’t care.
• It’s from a company in a foreign country. They won’t know, and they cannot enforce it.
• I have already paid too much for software that didn't work as expected.
• I'm promoting the software for the authors. I help them spread their product and make it

well known.
• There was no copyright notice on it.

There is a Short Answer to All these "Excuses":

In addition to preventing piracy, the ability to control license updates and software
distribution enables you to generate additional sales, improve customer relations and obtain
valuable marketing data by 100% customer registration.

The CRYPTO-BOX Remote Update capability allows you to react quickly and flexibly to end
user’s needs, and keep shipping and administration costs to a minimum. Programs can be
activated through the Internet, and products can be sold as modular components, authorized
after payment is received.

The CRYPTO-BOX System Offers the Following Advantages:
• All end users must pay for the software.
• Every end user is registered - an effective marketing tool!
• Support services are available only to paying end users.
• Additional software modules or license updates are easily activated via remote update.
• Updates are available only to authorized end users, ensuring a constant revenue stream.
• Network usage is controlled.
• Additional licenses bring more revenue.
• Applications, documents and video/audio files can be protected.
• Fast and easy protection with AutoCrypt.
• AutoCrypt requires no source code or programming efforts.
• Support for almost all compilers under Windows, Linux and macOS.
• iOS and Android based devices are supported.
• Professional anti-debug protection, compression and encryption prevent reverse

engineering of customer's application.
• Checksum and hash functions are available.
• Provides reliable protection against viruses and tampering recognition.

1.5. The CRYPTO-BOX®Hardware
The CRYPTO-BOX is the "heart" of the software and data protection solutions offered by
MARX. The on-board integrated AES encryption algorithm provides reliable security for
software and data protection scenarios. The short and robust metal case is only 1.28” (32,5

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

1. What is this Compendium About? 11

mm) long. The CRYPTO-BOX USB-C variant is even smaller: only 0.89” (22,5 mm) long and
thus ideal for mobile usage.

1.5.1. CRYPTO-BOX Models

The CRYPTO-BOX for the USB Port is Available in Five Different Versions:

• CRYPTO-BOX SC (CBU SC): This model is the latest generation of software protection
devices. It contains an EAL 4+ certified SmartCard chip with a Crypto Engine supporting
RSA up to 2048 bit in hardware and is probably the fastest token on the market. The
CRYPTO-BOX SC has 32 KB of internal memory available, e.g. for storing licensing
information.

• CRYPTO-BOX Memory (CB/M8): This previously released model combines the
functionality of the CRYPTO-BOX SC together with an 8GB USB 2.0 flash drive into an
attractive designer metal case. It allows you to ship your protected software, data, drivers
and tools on the same USB device – no additional CDROM or download is required.

• CRYPTO-BOX C (CBUC): The advantage of the CRYPTO-BOX® for USB-C ports is its
compact size and the connector which is reversible and can be inserted both ways. And it
has the same capabilities as the USB-A variant. It is available as SC, XS and Versa model.

• CRYPTO-BOX Versa (CBU VS): This popular model offers all features necessary for
software protection on local PCs. Within networks, you can decide if your software is limited
to the local PC or if it can be run in the network (without user limitation). It has an internal
memory of 4 KB for storing licensing information.

• CRYPTO-BOX XS (CBU XS). This model offers a unique serial number for every device.
The integrated License Control System (LCS) allows you to decide how many instances of
your software may be run at the same time in the network. The CRYPTO-BOX XS is
available with up to 64 KB of internal memory and supports a software implementation of
the RSA algorithm.

1.5.2. Technical Features of the CRYPTO-BOX®

• On-board encryption of data using the Rijndael algorithm (Advanced Encryption Standard
(AES), official successor to the DES algorithm) with a 128 bit key that never leaves the
CRYPTO-BOX, in OFB bit-stream cipher mode (output feedback) or CBC mode (chipher-
block chaining, CRYPTO-BOX SC only)

• RSA support (key length: 2048 Bits) in hardware (CRYPTO-BOX SC) or on driver level
(CRYPTO-BOX XS).

• Access control (PIN-based).
• Every CRYPTO-BOX (except the Versa model) has its own unique serial number.
• Encrypted EEPROM with 4 KBytes of on-board memory, up to 64 KB available for

CRYPTO-BOX XS; CRYPTO-BOX SC with 72KB secure memory (approx. 30KB free, high
speed access).

• Reliable communication and CRYPTO-BOX identification (Plug & Play).

For detailed information about the technical data of all CRYPTO-BOX models please refer
to Appendix A.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

2. Protection and Licensing Options 12

2. Protection and Licensing Options
The Smarx OS Professional Protection Kit (PPK) provides you with a comprehensive set of
protection techniques and options based on the CRYPTO-BOX. Before choosing a protection
strategy, it is important to understand the main concepts. This chapter presents some typical
samples and case scenarios describing the practical application of the Smarx OS Protection
Kit.

2.1. Overview
Hardware-based protection requires your protected applications and/or data files to have a
corresponding CRYPTO-BOX attached to the computer (or a computer within the network) in
order to function normally. The protected software will check for the presence of the
CRYPTO-BOX. If the CRYPTO-BOX is not found, the program can switch to a demo mode or
even refuse to work (depending on your protection strategy). If the CRYPTO-BOX is attached,
the program will communicate with it, performing more detailed verification:

• Serial number
• Developer ID
• Access codes
• Hardware-based encryption
• Dataobjects stored in the internal memory

All these, as well as many other unique CRYPTO-BOX features, can be used to build a reliable
protection strategy. Data files can be encrypted using the CRYPTO-BOX internal on-board
encryption. This approach guarantees an extremely reliable protection model: Encrypted data
files can be viewed only when a corresponding CRYPTO-BOX is attached to the end user's
computer. More limitations can be added, e.g. expiration dates: The end user will be able to
use the software only until a defined date is reached. MARX provides you with a convenient
way to update such expiration dates remotely (see chapter 6.1 for more details).

2.2. Automatic Protection and Implementation With API
When protecting your software, you have two basic choices:
• Automatic protection (see chapter 2.4 for details)
• Implementation into source code through API (see chapter 2.5 for details)

The Smarx OS PPK offers both options.

2.3. Benefits of the Smarx®OS Application Framework
The Smarx OS Application Framework (SxAF) makes protection and licensing of your valuable
digital assets (software, documents) very convenient:

• The same approach is used for adding protection and licensing to all kinds of digital assets.
• Projects of all supported types (automatic protection, protection with API, document and

media protection) are stored in one database – License Management Database (LM/db).
• One application – CRYPTO-BOX Format - is used to program (format) a CRYPTO-BOX to

work with a particular project. See chapter 4.9 for more details about CRYPTO-BOX

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

2. Protection and Licensing Options 13

formatting.
• A particular software or document needs to be protected only once, but CRYPTO-BOX

programming/formatting will be performed many times – one box per every end user
(Protect once, deliver many).

• All projects support remote updating of Data Objects with licensing information stored in
the CRYPTO-BOX memory via Remote Update Management System (RUMS, see chapter
6.1).

• Existing project settings can be exported from SxAF into an XML script to be used with
command line based applications.

• Key SxAF components (AutoCrypt, Data Objects Manager for Implementation with API,
CRYPTO-BOX Format, Remote Update) are available as command line utilities, which can
be easily integrated into and controlled by 3rd party applications (see chapter 7 for more
information).

You will find a detailed description of the Smarx OS Application Framework in chapter 4.

2.4. Automatic Protection With AutoCrypt
AutoCrypt automatic protection provides a fast, efficient and simple solution to protect
Windows applications. You won't need to spend any time learning about CRYPTO-BOX
internals and incorporating corresponding code to your program. You won't even need the
source code of your program. AutoCrypt Manager can do it all for you.

Your application is compressed and encrypted, then wrapped with a protective layer,
preventing it from working unless a valid CRYPTO-BOX is attached. Many additional features
and customizations are available.

For technical details about AutoCrypt and its functionality, please refer to chapter 4.4.

Sample: Use AutoCrypt to Secure Applications and Ensure Payment

Software Vendor A has spent considerable time developing their software and is ready for it to
hit the market. There is a tight time line and the application needs to be secured quickly. The
company´s sales model for this product is to provide customers with a limited version of the
software, valid for ten uses, and offer the option to upgrade to the full version for a one year
term, renewable each year. Software Vendor A decided to implement the CRYPTO-BOX and
AutoCrypt to ensure that these requirements are met.

Using AutoCrypt, Software Vendor A simply took their existing application and inserted the
necessary data-objects provided by AutoCrypt. They created a new project, added their
application, selected the execution counter data object (set to 10 uses) and created a license
status message with instructions on how to upgrade to a full year at the end of the trial period.
With the click of a button, they created a protected version of their software application.

The last step was to format the CRYPTO-BOX units for this protected application. Software
Vendor A selected the number of units to format and, within minutes, had a protected version
of their software ready for distribution.

After receiving the license status message, the end user requested full usage of the software.
Using RUMS (Remote Update Utility, see chapter 6.1), the end user sent an update request

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

2. Protection and Licensing Options 14

to the Software Vendor and, upon payment, received an Activation Key to update the license.

The same series of events will occur once the expiration date for this customer is reached.

This is only one of many options for software vendors to use AutoCrypt to secure applications
and ensure payment.

2.5. Implementation Into Source Code with API
Implementation into source code through the API is a feature targeted at developers who
need maximum security and flexibility for their applications. Using the API, you can
implement a product-specific and highly efficient protection strategy. You can integrate smart
support for demo and full-product versions of the program, online feature activation, remote
update scenarios, and much more.

Because Smarx OS allows you to protect multiple applications simultaneously with one
CRYPTO-BOX, you can mix applications protected through AutoCrypt and API-protection on
one CRYPTO-BOX unit. Currently, Windows, Linux, macOS and Android are supported for
API-protection implementations.

For more details regarding implementation with API and an overview about supported
environments (IDEs), please refer to chapter 10.

Sample: Turn Demos Into Paid Packages with API-Protection

Software Vendor B has developed a set of tax preparation applications, using Microsoft Visual
Studio .NET. They know that, in order for their software to become widely used by tax
consultants, they need to provide an almost fully functional demo. The only limitations
required are that the tax documents are not printable and all internet based submission
methods must be disabled.

These requirements were easily achieved using the Smarx API. If there is no CRYPTO-BOX
attached to the end user´s USB port, the software can be copied and is fully functional, with
the exception of the two limitations mentioned, which render the software useless to tax
consultants. Once a customer decides to purchase the tax preparation package, Software
Vendor B simply provides them with a CRYPTO-BOX.

Software Vendor B is able to protect all applications or application modules with one
CRYPTO-BOX. The CRYPTO-BOX supports multiple applications/modules, each with its own
licensing information partition in the internal memory.

The example above is a limited scenario where the CRYPTO-BOX API-protection scheme was
applied. Since implementation through the API is so flexible, the possibilities are virtually
infinite. For a more detailed description of the implementation with API, please refer to
chapter 10.

2.6. Software and Data Licensing
The Smarx OS PPK includes every tool and component you need to support all popular
licensing models. Network license management allows you to support multi-user licensing,
while the Smarx OS Remote Update interfaces offer the following: software renting, remote

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

2. Protection and Licensing Options 15

activation, subscriptions and Pay-per-Use models. These functions give you the means to
dramatically increase sales.

2.7. Network License Management
The License Control System (LCS) for network license management allows end users to run
more than one instance of your software product concurrently in the network. Only one
CRYPTO-BOX is required to store the network license counter with the number of licenses
granted to the end user. This CRYPTO-BOX has to be attached to one of the network
computers running Smarx OS Network Server.
The CRYPTO-BOX SC and XS have an integrated license counter that enables you to choose
how many instances of your software (between 1 and 254) can be run on the network
simultaneously (number of seats – Floating License). The CRYPTO-BOX Versa is network
enabled, but does not support license counters/Floating License.

Scenario 1: Use Network Licenses Without Limitation

Software Vendor C has developed a new application for corporations to use in their network
environments. For this application, Software Vendor C is not concerned about how many
people in the corporation will use the application, as they will purchase a corporate license.
However, Software Vendor C wants to ensure that the application can only be used inside the
corporate network, and they also need to be able to monitor and update the corporate license
for the application. Software Vendor C programs a single CRYPTO-BOX to be used in each
corporate network environment, containing all the necessary license information. This
CRYPTO-BOX will be configured with a user limit of 255 for unlimited usage (supported by the
CRYPTO-BOX SC and XS models). After configuration, Software Vendor C will set up the
Network Server (contained in the Smarx OS Professional Protection Kit) on a LAN computer,
to which the CRYPTO-BOX is connected. Once this is done, Software Vendor C will be able to
ensure that the proper CRYPTO-BOX is found and will be in a position to allow the application
to open the box using corresponding API calls. The Server Management Console will also
provide the LAN administrator with a convenient way of monitoring the application's status,
the attached CRYPTO-BOX, and all of the connected clients, etc.

Scenario 2: Limit the Number of Network Seats

Software Vendor D has developed an expensive application that also targets big corporations.
Software Vendor D, like Software Vendor C, wants to ensure that the application can only be
used in the corporate network, but also wants to limit access to the application based on the
number of licenses purchased. In other words, once a corporation has purchased a given
number of licenses, they will have only that number of connections to the application at any
given time. Software Vendor D is easily able to issue these licenses, using LCS (License
Control System), and grant up to 254 licenses per CRYPTO-BOX in a network. If the
corporation requires more licenses, in order to have more concurrent users, they simply
contact Software Vendor D, who can update the license information on the CRYPTO-BOX
remotely, using RUMS (Remote Update Management System).

Scenario 1 and 2 illustrate two uses of network license management with MARX products.
For more information about LCS please refer to our White Paper “Network Licensing”.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

2. Protection and Licensing Options 16

2.8. Maintenance of Protected Applications Using Remote Update
The Smarx OS Professional Protection Kit provides a convenient way for remotely
updating the memory or the parameters of a CRYPTO-BOX in the field without having to ship
the CRYPTO-BOX back and forth.

You can reprogram/update the following values inside the CRYPTO-BOX memory:

• Data Objects with licensing options, such as Expiration Date, Usage Counter or Application
Password

• Network licenses
• Individual objects (strings with license information, etc.)

There are two ways to utilize the Remote Updates:

• Using the Remote Update Management Systems (RUMS), part of the Smarx OS Application
Framework.

• Using the CBIOS RFP API (Remote Update API)

The first method is of interest for AutoCrypt users or people who do not want to spend time
developing their own distribution scenario. They can easily use the Smarx OS Application
Framework to program their individual Data Objects into the CRYPTO-BOX and have them
updated later by their end users. More information can be found in chapter 6.1.

The second method is for people who want to implement their own distribution scenario.
Given the Remote Update API, they can incorporate all necessary steps into their application
through API commands, from update request to update execution. Please refer to chapter 10
for more information.

Benefits of Remote Update:

• Saves time and money because the CRYPTO-BOX doesn't need to be shipped back and
forth for reprogramming;

• Remote activation of software features and remote access to your software;
• Remote extension of usage and software leasing and of expiration dates;
• Remote execution of maintenance work and remote exchange of data.

Sample: Generate a Transaction Key for Remote Updates in the Field

Software vendor A, from the earlier AutoCrypt Scenario, has had a very successful start with
their software product. They now get many requests for upgrades from their limited version to
their full version, and existing customers want licenses for terms of longer than just one year.
Using the CRYPTO-BOX and RUMS utility, Software Vendor A can quickly and easily process
all customer requests. To do so, Software Vendor A’s end users simply run the RUpdate tool
to generate a Transaction Key. Then, Software Vendor A processes the request in the Remote
Update Manager, which returns an activation code. This code is sent to the customer, who
feeds it to the RUpdate tool, automatically updating his software and CRYPTO-BOX.

This demonstration shows just one way the RUMS utility can be used. This method ensures
quick and easy license management for most scenarios.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

2. Protection and Licensing Options 17

Application Notes with detailed information about usage scenarios of Remote Update can
be found at www.marx.com Support Documents Application Notes RUMS.→ → → →

Summary:
• Turn an evaluation version into a full-featured product.
• Pay-per-Use distribution models.
• Update network license counter.
• Update information in the CRYPTO-BOX memory (such as license strings, etc.).
• Check usage counters and reset them for software leasing or accounting purposes.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

3. Starting with the Professional Protection Kit (PPK) 18

3. Starting with the Professional Protection Kit (PPK)

3.1. Installation

3.1.1. Windows

The Smarx OS Professional Protection Kit (PPK) which includes AutoCrypt for automatic,
libraries and sample code for implementation with API as well as tools for CRYPTO-BOX
programming and remote update can be downloaded from our web page.

Visit www.marx.com/downloads to download the latest PPK version (MyMARX registration
and valid Support Contract required). For new customers, Economy Support is included for
the first 45 days. Open the Setup.exe to start the installation.

Once the PPK installation has finished, attach the CRYPTO-BOX to your PC. Windows will
locate the drivers and install them automatically.

The PPK Control Center provides an overview of the components installed, including a brief
introduction and links to the components.

Fig. 3.1:
The PPK Control Center

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

3. Starting with the Professional Protection Kit (PPK) 19

If you want to update an existing PPK installation to a newer version, it is strongly
recommended to make a backup of your Smarx OS Application Framework (SxAF)
database. Refer to chapter 4.3 for more details.

3.1.2. Linux

There is a separate “Smarx OS 4 Linux” package available in our download area which
contains comprehensive support of Linux platform, including:
• Libraries and sample code for API based implementation for popular programming

environments (GCC, Java, Qt and more);
• CBIOS Network Server;
• SmrxProg - CRYPTO-BOX programming tool

Visit www.marx.com/downloads to download the latest “Smarx OS 4 Linux” package
(MyMARX registration and valid Support Contract required). Further information on CRYPTO-
BOX support under Linux can be found in chapter 10.14.

3.1.3. macOS

Visit www.marx.com/downloads to download the latest “Smarx OS 4 Mac” package (MyMARX
registration and valid Support Contract required).

An overview about libraries and sample code for macOS can be found in chapter 10.15.

3.2. How to Start
To protect your digital assets with the CRYPTO-BOX, you have to decide first if you prefer to
use AutoCrypt or Implementation with API. Chapter 2 gives you a decision guidance here.

If you prefer AutoCrypt, please continue with chapter 4.4.

If you decide for Implementation with API, continue with chapter 4.5.

For Document Protection, see chapter 4.6.

For Media Protection, see separate documentation on www.marx.com Support → →
Documents

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

https://www.marx.com/en/support/documents
https://www.marx.com/en/support/downloads
https://www.marx.com/en/support/downloads

4. Smarx®OS Application Framework 20

4. Smarx®OS Application Framework

Fig. 4.1:
Smarx®OS Application Framework

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

End-User

Copyright © 2011 MARX® CryptoTech LP

End-users

MARX®

Production Level

Remote Update
Activation

Request for
Remote Update

Protected product
delivery

MARX® Customers: Software Vendors and Content Providers
SmarxOS® Application Framework (SxAF) or Command Line Tools

Software
Development

Sales and
Delivery

--

Remote Update
Management System

– Control each
CRYPTO-BOX® out

there

Activation Code
generation

CRYPTO-BOX®
Format – Program the

CRYPTO-BOX®

End-User specific
CRYPTO-BOX®

End-User
Management

End-User profile

CRYPTO-BOX® Production (MARX)

CRYPTO-BOX® with
Standard Partitions

or with Partitions based on
customer specific
 Partition Table

AutoCrypt, Imple-
mentation with API,

Document Protection,
Media Protection

Project settings

Projects with
different licensing

options

Smarx OS® License
Management Database (LM/db)

Product History

End-User Records

Remote Updates
History

4. Smarx®OS Application Framework 21

4.1. Overview
The Smarx®OS Application Framework (SxAF) is a project-based environment for software
vendors and distributors. It automates software licensing and protection as well as data and
media protection:

• Protect and license your software using automatic protection or implementation with API;
• Define the necessary partitions and data objects for implementation with API into the

source code;
• Protect and license your documents with Document Protection;
• Create a compilation to combine protection and licensing of your different products into

one project and protect them with one CRYPTO-BOX®.
• Configure (program) the CRYPTO-BOX according to your protection and licensing scenario.
• Remotely update licensing data contained in the CRYPTO-BOX distributed to the end-user;
• Manage end-user profiles, etc.

The Smarx OS Application Framework is project-based, meaning that you will need to create a
designated project in order to protect your software products, documents or media files.

All projects are stored in the internal License Management Database (LM/db). With the Smarx
OS Application Framework, you can open existing projects to program a new CRYPTO-BOX,
process remote update requests or even change project settings at any time.

The Smarx OS Application Framework contains the following functional modules:

• AutoCrypt (for automatic software protection); see chapter 4.4
• Implementation with API - Data Objects Manager; see chapter 4.5
• Document Protection; see chapter 4.6
• CB Format (CRYPTO-BOX Format); see chapter 4.9
• Remote Update Management System (RUMS); see chapter 6.1
• End-User Management; see chapter 4.10

Additional options, such as end-user specific formatting and remote update history, can
assist with your licensing strategy.

Furthermore, you may choose different Product Editions and Update Plans for each project,
depending on your marketing and pricing strategies. You only have to set up the chosen
Product Editions for your project and program your CRYPTO-BOX units with corresponding
licensing data. See chapter 4.7 for more information on Product Editions.

4.2. Steps and Processes of Software/Document Protection
The Smarx OS Application Framework (SxAF) architecture covers the typical protection and
distribution requirements of software vendors and content providers. With SxAF, you can
protect your applications and documents, program the CRYPTO-BOX with the licensing data,
and process remote updates of licensing data in future.

You, the software vendor or content provider can choose how to protect your application,
documents or media files. You may use AutoCrypt for automatic protection, Data Object
Manager for implementation with API, or Document/Media Protection. All these components

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 22

are included into the Smarx OS Application Framework and share the same database
(LM/db), which contains information on your selected protection and licensing options.

After choosing your licensing strategy and applying it to your applications or documents, CB
Format is used to program the CRYPTO-BOX with the licensing data. Optionally, you can
include the Remote Update Utility into the package for your end-users to allow remote
updates of licensing data in future, utilizing the Remote Update Management System
(RUMS). After formatting, the CRYPTO-BOX is delivered to end-users.

If the end-user wants to update licenses, for example extend the usage time or increase the
number of network licenses, they can prepare and send you an update request (transaction
key) using the Remote Update Utility.

The history of remote updates is recorded in the database. In addition, it shows what kind of
remote updates (packages/plans) were provided for corresponding projects and end-users.

It is important to differentiate project management (selection of protection and licensing
options and software/document protection itself) from CRYPTO-BOX programming (using
CB Format). Applications/documents can be protected one time, but related CRYPTO-BOX
formatting may be performed many times for different end-users. Smarx OS Application
Framework contains end-user profile management and remote update history as part of the
LM/db, which can be helpful for your own licensing strategy.

4.3. Smarx®OS Application Framework – First Start
When starting the Smarx OS Application Framework (SxAF) for the first time, a new database
is created and you will see the following dialog:

Fig. 4.2:
Creating new database dialog

If you have a database backup file made by a previous installation of SxAF (2.x or later), use
the “Restore database from backup” option.
If you have an existing backup of SxAF 1.x database (teosdb.mdb), you need to convert it
first with a special conversion tool. You will find it under C:\Program Files\MARX Software
Security\SmarxOS PPK\Tools\DBExport. After successful conversion, you can import the
converted database with the “Restore" option in "Database" menu.

If you choose “Leave database empty”, the database contains only default “cbu_demo”
Hardware Profile and no projects.
The “Create demo projects” option provides two demo projects, one for AutoCrypt (local and
network) and one Protection with API project, intended for Evaluation.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 23

It is strongly recommended to make regular backups of the SxAF database, especially
when you want to update to a new version of the Protection Kit. To backup the database,
select “Backup" option in "Database" menu.

When the Smarx OS Application Framework main screen appears, you can create a project
according to your desired protection scenario:

• For automatic protection of Windows .exe and .dll files, see chapter 4.4
• For implementation with API, see chapter 4.5
• For secure distribution of documents, see chapter 4.6

4.4. Automatic Software Protection with AutoCrypt

4.4.1. Overview

AutoCrypt protects applications without any programming efforts. It allows you to wrap any
existing executable file with a secure layer of protection. The protection process involves
incorporating of security code into your application's executable file, including compression
and encryption of the original code. AutoCrypt has many features which enhance creative
distribution strategies, including expiration dates, usage limits, periodic hardware checks,
passwords and much more.

4.4.2. AutoCrypt Wizard, AutoCrypt SxAF, AutoCrypt Command Line

MARX offers 3 AutoCrypt versions:

a) AutoCrypt Wizard

This is the easiest way to protect your .EXE or DLL files. The Wizard guides you through each
step of protection, licensing and CRYPTO-BOX configuration for quick results. You may also
export the project file for usage with the SxAF (see below) providing you with some advanced
licensing options, including project and user management, or with our command line tools.

b) AutoCrypt SxAF

This solution is less intuitive, but provides you with some advanced licensing options
contained in SxAF, such as support for Product Editions (see chapter 4.7) as well as project
and user management (see chapter 4.10)

c) AutoCrypt Command Line

The biggest advantage of this solution: the protection process can be controlled within other
applications or batch-files. This allows a high grade of automation and deep integration into
your own, specific distribution strategy.

For a step-by-step guide on how to protect your application with AutoCrypt (Wizard, SxAF
or command line version), please refer to our “AutoCrypt” Application Notes:
www.marx.com Support Documents Application Notes AutoCrypt.→ → → →

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 24

4.5. Using Smarx®OS Application Framework for API Implementation
The Smarx OS Data Objects Manager – part of the Smarx OS Application Framework –
provides convenient project management for software that is protected by API (protection
implemented into source code). With the Data Objects Manager it is easy to manage smart
data objects in CRYPTO-BOX memory partitions, which will be verified in the developer’s
code. These data objects include expiration dates, usage limits, network licenses, customer-
specific memory objects, etc.

4.5.1. Steps for Protecting Applications with API

To protect your application with API, we recommend the following steps:

1. MARX supports almost all popular programming environments. We recommend that
you familiarize yourself with our available APIs for developers by reading chapter 10 in
this Compendium and evaluating the sample code in the PPK (see chapter 10.12.2 for
a table of supported environments). Then choose your own protection strategy.

2. Define a new SxAF project, specifying Implementation with API as project type. A
project includes all information used for programming the CRYPTO-BOX and is stored
in the SxAF database (LM/db).

3. Choose the project-specific values for the CRYPTO-BOX, such as label and AES keys.

4. Select your project's licensing strategy by defining one or more partitions to hold data
objects with licensing information, which can be expiration dates, counters, network
licenses and/or customer specific memory objects (see chapter 4.5.5).

5. Use CB Format (see chapter 4.9) to format your CRYPTO-BOX units with the project
settings). Optionally, you can export your project settings into an XML file to use it with
our command line based tool “SmrxProg” for CRYPTO-BOX formatting which provide
more automation options (see chapter 4.8). Under Linux and OS X, SmrxProg is the
only option for CRYPTO-BOX formatting.

6. If you plan to update your CRYPTO-BOX later at your end-user's site, you can create
the Remote Update Tool for this project and ship it together with the CRYPTO-BOX to
your end-users (see chapter 4.9.3 for more information).

7. Test all licensing options carefully.

8. Ship your protected application, along with the CRYPTO-BOX and supplemental files
(drivers, network server for network licensing if applicable). For Windows platform,
device drivers (and network server in case of protection in networks) for the
CRYPTO-BOX has to be shipped together with your protected application. MARX
provides easy-to-use setup tools and even Windows Installer Merge Modules for this
task. See chapter 8 for more details. Linux and OS X users will find more details on
prerequisites in the readme files of the Linux/OS X package (see chapter 3.1).

4.5.2. Creating, Deleting and Selecting projects

Start SxAF: In the PPK Control Center, choose “Quick Access” “SxAF”. On the main screen→
of the Smarx OS Application Framework, you can create a new project or work with an existing
project. If you work with an existing project (or you want to evaluate one of the demo

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 25

projects), click the “Projects” tab on the left navigation bar and select an existing project. Or
select “Create Project” to create a new project.

Enter a project name. Then select “OK”, to continue by defining the project settings.

The “Inherit settings from” option allows you to create an independent copy of an existing
project. All project and partition settings will be taken from the existing project.

Fig. 4.3:
Creating a new API-based project

4.5.3. General Project Settings

With the “General Settings” tab in the navigation tree on the left side you can edit settings for
the selected project.

You can change/edit the project name and the description. You can also lock this project (use
it in read-only mode). This avoids accidental changes to the project. It is also possible to
unlock the project for editing. But be careful if you already produced (formatted) CRYPTO-
BOX modules with this project: You will not be able to process Remote Updates for these
CRYPTO-BOX modules.

In the lower part of the window, you need to select your projects CRYPTO-BOX hardware
profile. This profile contains the codes needed to access the CRYPTO-BOX. MARX distributes
this to customers as a TRX file. Simply select the “cbu_demo” profile for the Evaluation Kit
CRYPTO-BOX or click “Import profile” to import the profile you received with your customer-
specific CRYPTO-BOX.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 26

Fig. 4.4:
API-based project: project settings

If you have existing partitions in the CRYPTO-BOX, for example created with another project
or with the Extended API (see chapter 16), and you do not want to change them, you can
check the "Keep memory allocation for existing partitions (SxAF 3.x compatibility mode)"
option. When you do so, CB Format will use the existing partition structure to write the project
data (see chapter 4.9). If this option is not checked, CB Format will assign the memory size
dynamically, according to project requirements. For example, the CRYPTO-BOX already
contains a partition #200 with 50 bytes assigned to RAM1, but the data objects written to this
partition will occupy only 40 bytes of RAM1. By default, CB Format will dynamically assign
those 40 bytes to save space. If the option "Keep memory allocation for existing partitions
(SxAF 3.x compatibility mode)" is checked, it will write the data objects to the existing RAM1
memory, which was already assigned, and keep the 50 bytes RAM1 size for this partition
intact.

If you wish to ensure that your project is only accessible with a particular type of
CRYPTO-BOX hardware, you can use the "Select dedicated hardware type" to specify your
choice: CBU SC (CRYPTO-BOX SC) or CBU (CRYPTO-BOX XS and Versa). You can use the
"Select dedicated memory size" option to limit the memory size to be used with this project,
and/or if you want to make sure that the project settings will fit to a particular CRYPTO-BOX. If
the default settings are used, SxAF will try to adapt the project settings to the attached
CRYPTO-BOX during formatting.

With the check box "Program CRYPTO-BOX label" you can set/change the label. The label is
part of the CBIOS_BOX_INFO structure which can be obtained via the
CBIOS_GetBoxInfoAdvI API command.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 27

The two “Manage encryption key values...” options define the values for the AES Private/
Session Key and Initialization Vector of the CRYPTO-BOX hardware based AES encryption.
The AES encryption can be used with the CBIOS_CryptPrivate and CBIOS_CryptSession API
commands. By default, SxAF will generate new, random key values. To update key values with
TRX file settings (factory default key settings for your CRYPTO-BOX), click the “Update”
button.

The "Protect with AutoCrypt" button will add automatic protection to any EXE/DLL module of
your program. This can be used for additional security. Please refer to chapter 4.4 Automatic
Software Protection with AutoCrypt for more details.

4.5.4. Adding Partitions to the Project

Click the “Partitions” tab on the left navigation tree to start managing partition settings. Here
you can add, edit and remove partitions; partitions are used for storing sets of licensing data
(data objects) defining licensing logic for protected applications.

We strongly recommend to read chapter 10.2 for details on CRYPTO-BOX partitions – it is
important to understand this concept!

To add a new partition to the project, click the “Add Partition” button and specify the number
of your new CRYPTO-BOX partition. The number of a partition must be in the range between
101 and 65535.

Fig. 4.5:
Adding a new partition to the project

To delete an existing partition, select the partition from the list and click the “Delete
Partition” button.

To change the data objects settings of a partition, double-click the desired partition or select
it from the left navigation bar.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 28

4.5.5. Defining Data Objects

Here you can set application-specific data objects that will be programmed into the selected
CRYPTO-BOX partition. Select the desired data object from the list and click the “Add Data
Object” button to add the data object to the selected partition.

Fig. 4.6:
Adding Data Objects

The following data object types are supported (see also chapter 14 for more information on
Smarx OS Data Objects API) :

• Run Counter: specifies the number of application executions (runs). This counter
decrements one step for each execution. As soon as the run counter is 0, the license is
expired.

• Expiration Date & Time: fixed expiration date and time of the application's license
expiration. After this date, the application can no longer be started.

• Expiration Date: fixed expiration date of the application's license expiration. After this
date, the application can no longer be started. This type of data object is obsolete and
preserved only for compatibility purposes. We recommend that you use “Expiration Date &
Time” instead.

• Expiration Days: flexible expiration of license in number of days. The license counter
decrements one step per day. After the defined number of days has expired, the
application can no longer be started.

• Expiration Time: real-time expiration of a license in hours, minutes, and seconds. The
license counter decrements during execution each time the periodic check is called.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 29

• Password: an application launch password. It is queried every time the application is
launched.

• Network License: number of times the protected application can be simultaneously
launched in the network (number of “seats”, Floating License). Multiple instances of the
protected application can be launched from one or more network computers with one
CRYPTO-BOX connected to the server (see chapter 42 for more information).
The “License sharing rule” option can be activated to specify different license sharing
options. “Sharing” means that, when a specified condition is met, a predefined group of
application instances can use the same license (instead of the usual one license per
application). IMPORTANT: if the “License sharing rule” option is activated
CBIOS_LockLicenceExt API call must be used.

The “Network License” data object is stored in a special area of the CRYPTO-BOX memory.
It can hold network license information for multiple partitions (different applications). That
means you can define independent network license counters for each partition
(application) in the CRYPTO-BOX. See chapter 5 for more information.

• Data Encryption Key Object: data object that supports Data Encryption.
More information on Data Protection API can be found under the corresponding entry in
the Protection Kit Control Center.

• AES Key: AES Encryption Key programmed in RAM5 zone. Key values cannot be read from
this zone, they can be used for hardware-based AES encryption only. This type of data
object is supported exclusively by the CRYPTO-BOX SC. For more information using this
key type, please refer to chapter 10.10.

• RSA Key: RSA Encryption Key programmed in RAM4 zone. Key values cannot be read from
this zone, they can be used for hardware-based RSA encryption only. This data object type
is supported exclusively by the CRYPTO-BOX SC. For more information using this key type,
please refer to chapter 10.10.

• AES Descriptor: AES Encryption Key Descriptor to be programmed to application partition.
Allows programming of key type (CBU SC AES or Internal AES) as well as AES algorithm
specific data.

• RSA Descriptor: AES Encryption Key Descriptor to be programmed to application partition.
Allows programming of key type (CBU SC RSA or Internal RSA) as well as RSA algorithm
specific data (like padding).

• Signature: Combination of two RSA encryption key descriptors used for signing routine.
• Binding to local PC: Locks the software to the computer on which it is running or to the

network server where the CRYPTO-BOX is attached.
• Memory Object: customer-specific data objects (memory block of variable size) to be

written into a CRYPTO-BOX partition and to be read/updated by the protected application.
Memory objects may be loaded from a file prepared beforehand (e.g. from a .txt or .ini file)
using the “Load from File” button.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 30

Fig. 4.7:
Adding Memory Object

Memory objects cannot be larger than the space available in the CRYPTO-BOX memory.
If the size of memory objects exceeds the space available, CRYPTO-BOX Format will
display an error message during formatting.

You may add one or more data objects and edit/change their values. Data objects are located
in the partition memory; their offsets are calculated dynamically.

If you need to have different data object settings for different customers, you do not need
to create a separate project for each customer! Just create different Product Editions of
your project with different data object settings. Please refer to chapter 4.7 Product Editions
for more information.

The “Protection with API” project is stored automatically in the SxAF database. The data
objects will be programmed into the CRYPTO-BOX using the CB Format component for
CRYPTO-BOX programming (see chapter 4.9 CRYPTO-BOX®Format: Configuring and
Programming) so the application may be used only when the CRYPTO-BOX is present.

Later, various protection options, set by Smarx OS Data Object Manager, can be updated
remotely using the Remote Update Management System (RUMS).

A more detailed decription of these data objects and how to access them using API
commands provided by the Smarx OS DO API can be found in chapter 14. You may want to
try different protection and licensing options to determine the best protection strategy for
your application.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 31

After you have specified your desired project settings, you need to format your CRYPTO-BOX
units with the project settings, using CB Format. See chapter 4.9 CRYPTO-BOX®Format:
Configuring and Programming for more information.

If you plan to update your CRYPTO-BOX remotely, we strongly recommend that you create
additional (empty) data objects and reserve them for future use. Later, you can use SxAF
RUMS to update their content (see chapter 4.9.3). Because RUMS in SxAF can only
update existing data objects! If you need to add new memory objects later, you can use the
command line based RU_Tool.exe, see chapter 7.5.

4.5.6. Export of Data Objects Map and Smarx®API License File

With the Data Object Manager, you can export the data objects map to a file to load it with an
external application. A sample illustrating the evaluation of the map file and testing product
specific licensing logic is included to the Protection Kit (Visual Studio project). See Control
Center Implementation with API Demo Code DODemoApp fur further details. → → →
To export the data objects map, click the “Save DataObjects Map” button.

See chapter 11.2 for instructions on how to export a license file for usage with the Smarx API.

4.6. Document Protection
Document Protection offers a secure way to distribute digital documents. This solution
converts customer-specific documents to PDF format and then encrypts them to ensure they
cannot be viewed without an attached CRYPTO-BOX. All common text formats (such
as .DOC, .TXT, .RTF) are supported. Additionally, protected documents may contain an
expiration date, which can later be updated with the Remote Update Management System
(RUMS, see chapter 6.1).

Document Protection consists of two components: The Document Protection component of
Smarx OS Application Framework and the PDF Viewer, which is used to view the protected
documents.

If you look for protection of digital media (audio and video files with the CRYPTO-BOX,
Media Protection is available as separate product, see www.marx.com Shop Solutions → →

 Media Protection for more details. →

Both Media Protection and Document Protection do not require programming.

4.6.1. Steps for Protecting Digital Documents

Document Protection is accomplished through the following steps:

1. Define a new SxAF Document Protection project. A project includes all information
that is used for programming the CRYPTO-BOX. The projects are stored in the Smarx
OS License Management Database (LM/db).

2. Select appropriate licensing strategy for the project by defining one or more licensing
groups and/or product editions with optional expiration date specified for every group
and edition defined for the project. Groups are used to organize documents. For

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 32

example, you can create a group for all documents relating to your English manual,
one group for the German manual and one group for extra documents. So it is very
easy to add complete groups to a project.

3. Individually add documents to one of the project groups and select conversion options
for each document.

4. Protect the documents.

5. Use the CB Format component of SxAF (see chapter 4.9) to format the CRYPTO-BOX
units with the project settings).

6. With the PDF Viewer, end-users are able to view protected documents only when a
CRYPTO-BOX properly formatted for this project is attached to the end-user’s
computer.

7. If you plan to update licensing options later at your end-user's site (prolong usage
time by modifying the expiration date), you can create the Remote Update Tool and
ship it together with the CRYPTO-BOX to your end-users (see chapter 4.9.3 for more
information).

8. Ship your protected documents together the CRYPTO-BOX and the necessary
supplemental files (PDF Viewer setup, CRYPTO-BOX driver setup). MARX provides an
easy-to-use redistribution setup. See chapter 4.6.7 for more details.

4.6.2. Creating a New Project or Selecting Existing Projects

On the main screen of the Smarx OS Application Framework, you can either create a new
project or work with an existing project. If you work with an existing project, click the
“Projects” tab on the left navigation bar and select an existing project. Or click the “Create
Project” button to create a new project.

Enter a project name. Then press the “OK” button to continue by defining the project
settings.

With the “Inherit settings from” option you can create an independent copy of an existing
project. All project and partition settings will be taken from the existing project.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 33

Fig. 4.8:
Creating a new Document Protection project

4.6.3. General Project Settings

With the “General Settings” tab (in the navigation tree on the left side) you can edit settings
for the selected project.

You can change/edit the project name and the description. You can also lock this project (use
it in read-only mode). This avoids accidental changes to the project. It is also possible to
unlock the project for editing. But be careful if you already produced (formatted) CRYPTO-
BOX unis with this project: after editing the project you might not be able to process Remote
Updates for these CRYPTO-BOX units.

In the lower part of the Window, you need to select your projects CRYPTO-BOX hardware
profile. This profile contains the access codes that the protected application needs to access
the CRYPTO-BOX. You will receive it as a TRX format file with your CRYPTO-BOX shipment
from MARX. Click on “Import profile” to import the profile you received together with your
customer specific CRYPTO-BOX units. To evaluate a CRYPTO-BOX Evaluation Kit simply
select the “cbu_demo” profile.

4.6.4. Creating a Document Group

Document protection projects consist of one or more groups, each with one or more
documents. Each group may have its own expiration date, or you can use the “never expires”
option, which means that the documents in this group will be available for reading without
expiration.

If you do not want to create different groups of documents, you can simply add your
documents to the project without creating a group. Then, global settings of the project for the
expiration date will be valid.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 34

Click the Add Group“ button to create a new group of documents. In the following window,
specify a name for the document group you want to create. The “Comment” field can be used
to add a detailed description to the document group. Additionally, you need to choose an
expiration date for the documents in this group (or check the option “Never expires”).

Fig. 4.9:
Creating a new group of documents

Click “OK” to create the group and go back to the main screen. You will see that the new
group you created will appear under the "Documents & Groups" tab in the navigation tree.

4.6.5. Adding Documents to the Group

Now you can add a document to the group being created or delete a document from the
group. Also, this page allows you to convert documents using MARX PDF Converter Printer,
upload them to the Document Pool and attach (add) them to the group. The Document Pool is
the document-related part of the SxAF database (LM/db). It contains folders organized in tree
structure and documents. All the contents of the Document Pool reside in the LM/db. When
you delete a document from the project, it is being deleted only from the project, not from the
Document Pool.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 35

Fig. 4.10:
Adding new documents

To add a new document (and upload it to the Document Pool), click the “Add new” button.
You will see the “Convert Document” dialog. In this dialog, you need to provide document’s
path, name the document will have in the Document Pool, and the Document Pool folder the
document will be uploaded to.

If the "Add as a reference" option is checked, SxAF will not upload the source document to
the database to save space.

The option "Skip conversion" allows you to add existing PDF files directly to the Document
Pool without using the MARX PDF converter. This option is not available for documents which
need to be converted to PDF first (for example Microsoft Word documents).

Use multilingual support

When this option is selected, any characters that are not included in the Western European
and US character sets will be converted. Additionally, all document fonts will be embedded to
ensure that the document is displayed correctly. Keep in mind, however, that this conversion
is less efficient and files tend to be larger in size.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 36

Fig. 4.11:
Convert document and upload it to the Document Pool

Advanced conversion settings

This option enables you to edit some more conversion settings:

• Use fonts embedding: By selecting this option you will enable inclusion of all True Type
fonts used by the document in the output PDF file. This results in larger files but ensures a
consistent appearance of the document on any platform. You have to activate this option if
you want to convert a PDF file with embedded fonts. If the "Use multilingual support"
option is selected, fonts will be embedded automatically.

• Page resolution: defines the resolution of the converted document in DPI. Higher
resolutions result in better quality. However, the document can become very large.

• JPEG compression: defines the compression level of pictures. "High" means strong
compression but less picture quality, "Low" means good picture quality but larger
document size.

You can add a document of any type (not only PDF, but also DOC, RTF, TXT). It will be
converted to the Portable Document Format (PDF). Please note, that some document
formats (like .doc files) require to have the source application (e.g. Microsoft Word)
installed on your PC to convert them.

To start document conversion, press OK.
After the conversion process is finished, the converted document is automatically added to
the selected group (or to the root folder) and also appears under the "Documents & Groups"
tab in the navigation tree.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 37

4.6.6. Protect Documents

After you finish adding all the documents to the project and set up the document groups, click
“Protect”. All documents in the current project will be protected and stored in the selected
target folder.

If you are currently in a group folder, Document Protection will only protect files of this
group. If you have selected the project root folder (the "Documents & Groups" tab in the
navigation tree), Document Protection will protect all documents in the project.

After you have finished protecting all required documents in your project, you can start to
program the CRYPTO-BOX units you want to distribute with the protected documents. Please
use CRYPTO-BOX Format to do this (see chapter 4.9 CRYPTO-BOX®Format: Configuring and
Programming).

4.6.7. PDF Viewer

The PDF Viewer is intended for end-users to access documents protected with Document
Protection. To view protected documents, the end-user has to attach a valid CRYPTO-BOX
(formatted with the settings of the Document Protection project, see chapter 4.9) to the USB
port and open the file (with PPD extension).

Refer to chapter 8 and 8.3 for more details on CRYPTO-BOX driver and PDF Viewer
installation at the end-user site.

4.7. Product Editions
Every SxAF project (AutoCrypt, Implementation with API or Document/Media Protection) is
associated with some license: a set of data objects with initial values defining licensing for
software product or document(s) protected with this SxAF project.

When protecting a software or media product, you may want to define more than one license
per project, or in other words, have more than one edition of your product.

Some examples for product editions:

• Advanced Local Edition: for 1 year
• Unlimited Local Edition: unlimited
or

• Standard Network Edition: 5 network licenses for 6 months
• Advanced Network Edition: 10 network licenses for 1 year
• Platinum Network Edition: 15 network licenses, unlimited time

And so on.

Such editions can help with your marketing and pricing strategies. All you have to do is to set
up the desired Product Editions for your project and format your CRYPTO-BOX units with
those corresponding settings using CRYPTO-BOX Format (see chapter 4.9). Product Editions
are supported for all types of SxAF Projects (AutoCrypt, API based Protection, Document

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 38

Protection and Media Protection). If you do not create your own editions, the standard edition
serves as the default option.

To add a new Product Edition, click the "Product Editions" tab on the left navigation tree.
Choose "Add Edition" to create a new one or double-click on an existing partition to change
its settings.

Fig. 4.12:
Adding Product Editions

You can only change data objects in the Product Edition settings which were initially
created in your project settings. Therefore, please be sure you have created the
corresponding data object in your project before you create Editions with different settings.
For Document/Media Protection projects there is only one data object type supported:
Expiration Date.

4.8. Generating XML Script for Use with Command Line Tools
If you want to integrate application protection and CRYPTO-BOX formatting with your own
administration/ distribution strategy, choose the “Generate script for SmarxTools“ in the
“Project“ menu. This allows you to export the project data to a XML script file for further
usage with AC_Tool.exe (in case of AutoCrypt project), Doc_Tool.exe (in case of Document
Protection Projects) and/or SmrxProg.exe.

AC_Tool (for protecting applications, see chapter 7.2), Doc_Tool (for protecting documents,
see chapter 7.3) and SmrxProg (for configuring CRYPTO-BOX modules for all type of SxAF
projects, see chapter 7.4) are console applications. They are controlled via command line
switches and can be called up by applications or scripts.

4.9. CRYPTO-BOX®Format: Configuring and Programming
CRYPTO-BOX Format (CB Format) as part of the Smarx OS Application Framework provides
CRYPTO-BOX formatting for projects stored in the SxAF database (LM/db). The following

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 39

project types are supported:

• AutoCrypt projects (see chapter 4.4)
• Protection with API projects (see chapter 4.5)
• Document Protection projects (see chapter 4.6)

To start CRYPTO-BOX Format click “CB Format” in the Smarx OS Application Framework.

4.9.1. Selecting Projects to Format

Select an existing project in the upper window. The project summary field below allows you to
review the project settings.

Fig. 4.13:
CRYPTO-BOX Format: "Select Project" dialog

4.9.2. Formatting CRYPTO-BOX Modules

In the lower right corner, select the number of CRYPTO-BOX units you want to format. Plug in
the first CRYPTO-BOX and click the “Format” button. In the next window, you will see the
following options:

• Information about formatted CRYPTO-BOXes - shows you the CRYPTO-BOX units you
already formatted, including Serialnumber, selected Product Edition and assigned
end-user

• Select Product Edition - choose the desired Product Edition (see chapter 4.7 for more
information on Product Editions)

• Specify End-User - select this box if you want to assign the formatted CRYPTO-BOX to a
certain end-user (see chapter 4.10 for more information on end-user management). This
allows you to identify the end-user later during Remote Update. If you have not specified
any end-users earlier, this field will be grayed out.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 40

• CRYPTO-BOX Serialnumber - displays the serial number of the currently attached
CRYPTO-BOX.

• Forced overwrite mode - will delete all existing partitions from the CRYPTO-BOX, except
the project specific ones.

Click the “Format Next” button to start formatting the first CRYPTO-BOX. A message box
shows the status of the formatting process. After all CRYPTO-BOX units have been formatted,
click “Stop Formatting” to close the window.

If you get an error message during formatting that Administrator login to the CRYPTO-BOX
has failed, check if you specified the correct CRYPTO-BOX hardware profile (TRX file) in
your project. Please refer to the description in the "General Project Settings" chapter,
depending on your selected project type.

Fig. 4.14:
CRYPTO-BOX Format: "Select Project" dialog

The command line tool SmrxProg allows you to automate CRYPTO-BOX formatting. See
chapter 4.8 for more information.

After you have protected your applications, documents or media files and formatted the
CRYPTO-BOX, you can ship it together with supplemental files (drivers, network server for
network licensing if applicable) to your end-users. MARX provides an easy-to-use
redistribution setup. See chapter 8 for more details.

Do not change the project settings after you have formatted CRYPTO-BOX units for your
end-users. If you need to update licensing information we recommend that you use Remote
Update (RUMS).

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

4. Smarx®OS Application Framework 41

4.9.3. Creating Remote Update Utility

If you want to allow updates of your end-user’s CRYPTO-BOX later, you need to generate the
Remote Update Tool. This program encapsulates the project and CRYPTO-BOX specific data
and can be distributed to the end-user together with the CRYPTO-BOX. Click the “Generate”
button on the CB Format main screen (See Figure 4.20) and select the path and filename the
Remote Update Utility should be extracted to. A detailed description of how to update
licenses remotely on the End-User side can be found in chapter 6.1.

The Remote Update functionality is available as an option. See www.marx.com Shop → →
Solutions RUMS for more information.→

4.10. End-User Management
With the Smarx OS Application Framework, you can assign CRYPTO-BOX units which have
been formatted with corresponding project settings, such as AutoCrypt, Protection with API
or Document Protection, to particular end-users. This assignment can be done during
CRYPTO-BOX Format (see chapter 4.9) if the end-users are already defined in the database.
Click the “End-Users” button on the SxAF main screen to add end-user descriptions to the
database.

There is no need to fill in all the fields for every end-user. For user selection in CRYPTO-BOX
Format and for identification during Remote Update, filling in the name fields is sufficient.

If you want to take customer information and licensing information from your own,
customized database instead of using the License Management Database available in
SxAF, you can implement CRYPTO-BOX configuration into your own system by using
command line based tools. See chapter 7 for more information.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

5. Network License Management 42

5. Network License Management

5.1. Introduction
Network licensing is ideal for cost-effective software licensing in (corporate) networks. The
software vendor determines how often the application is allowed to run in a network - with just
one CRYPTO-BOX per network.

Furthermore, it allows software licensing not only for PCs and laptops, but also for
environments without the possibility to connect a dongle directly:

• Mobile devices (Tablets, Smartphones)
• IoT devices
• Virtual machines (Windows/Citrix Terminal Server)

Please refer to our White Paper “Network Licensing” for more details.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

6. Updating Licenses Remotely 43

6. Updating Licenses Remotely

6.1. Remote Update Management System - RUMS
The Remote Update Management System (RUMS) provides a convenient way to perform
remote updates of licensing data objects programmed inside the CRYPTO-BOX. It can be
used with:

• AutoCrypt (automatic protection, see chapter 4.4);
• Implementation with API (API based software protection, see chapter 4.5);
• Document/Media Protection

without any programming efforts.

See the RUMS Application Notes for a detailed description of all options offered by RUMS.
The Remote Update functionality is available as an option (one-time fee). See
www.marx.com Shop Solutions RUMS – Remote Update for more information and → → →
pricing.

6.2. Online License Management - OLM

6.2.1. Introduction

The Online License Management technology based on Smarx Cloud Security (WEB API)
provides automated online update for application/document/media licenses (set of data
objects, programmed to application specific CRYPTO-BOX partitions). OLM is used in
cooperation with the Smarx OS Application Framework which provides generation of license
update scripts for all types of supported projects:

• AutoCrypt (automatic software protection);
• Implementation with API (API based software protection);
• Document/Media Protection.

Compared to RUMS, which generates an activation code for every individual remote update
transaction according to update requests obtained from the end-user side, OLM uses remote
update plans generated once and deployed on web server. All end-user update requests are
processed automatically on server side.

The OLM technology helps MARX customers to automate remote updates and significantly
decrease human efforts spent at software vendor’s side.

6.2.2. How Does it Work ?

Online License Management is based on Smarx Cloud Security (Server knows PIN scenario)
and contains client-side components (used to access the CRYPTO-BOX) and server-side
components (to be deployed on web server). OLM can be considered as a higher abstract
layer built on top of Smarx Cloud Security (WEB API).

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

6. Updating Licenses Remotely 44

OLM can be used only with CRYPTO-BOX XS or Versa firmware 2.2 (or higher) or
CRYPTO-BOX SC, and it requires a an ASP.NET web server where OLM server side
components and license update scripts will be deployed and integrated into customer
specific web environment.

The client-side component is the same as used for any Smarx Cloud Security scenarios: it is
implemented as a browser plug-in for Internet Explorer, Firefox, Chrome, Safari and Opera.
The component provides access to the CRYPTO-BOX from within client’s Web browser.
License update commands are generated on the server side, encrypted and MIME-encoded,
embedded into HTML/JavaScript page, sent to the Web browser, decrypted and executed by
the client component. Commands execution results are encrypted, MIME-encoded and sent
back to the server.

OLM is a solution on top of Smarx Cloud Security (WEB API). For more details on Smarx
Cloud Security basics and documentation, please refer to the "Smarx Cloud Security (WEB
API)" section in the Smarx Control Center. In contrast to OLM, WEB API requires manual
implementation of update mechanism, but is more flexible in system requirements (also
supports PHP and JSP technology). More details can be found below.

6.2.3. Client-Side Requirements

• Hardware: Smarx OS formatted CRYPTO-BOX (firmware 2.2 or higher);

• Driver: CRYPTO-BOX driver must be installed;

• Client component:
◦ SMRXWEB COM-object for Microsoft Internet Explorer;
◦ npWebSec plug-in for Firefox, Chrome, Safari or Opera;

• Operation System/Browser:
◦ Windows: Microsoft Internet Explorer, Firefox; up-to-date versions of Chrome,

Safari or Opera
◦ Linux: Firefox

MARX provides an easy-to-use setup for installing all required components (CRYPTO-BOX
drivers and browser plugin) on the end-user's computer. See chapter 8.4 for more
information.

6.2.4. Server-Side Requirements

• Application: Customized Web application with OLM module (ASP.NET 2.0);

• Web Server with ASP.NET 2.x support
◦ OS: Windows
◦ IIS 6.0 or higher

• WEB API (without OLM) supports Web Servers with PHP (5.04 or higher) as well as
JSP (Java JDK 1.4.2 or higher), too.
◦ OS: Windows, Linux, FreeBSD or any other PHP/JSP enabled system

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

6. Updating Licenses Remotely 45

◦ Apache, IIS, PWS, …

6.2.5. License Update Scripts Generation

The Smarx OS Application Framework generates the script files, which are necessary for
automated license updates. These files are generated in XML-format and could be of two
types:

• CRYPTO-BOX access codes scripts
• License update plans scripts

CRYPTO-BOX access codes (UPW, APW, Fixed AES Key/IV, Client Public RSA Key, Distributor
Private RSA Key) are needed to perform client-server handshake authentication, CRYPTO-
BOX verification and read/write access to partitions and data objects.

To generate the access codes script, launch the Smarx OS Application Framework (SxAF),
open desired project and select menu item “Export access codes” in the “OLM” menu. The
required access code data will be taken from the TRX-file assigned to the chosen project.
Select the folder where you want to store the XML file with access codes and click the "Save"
button. The generated file has to be deployed on the Web Server, to be used with OLM
application. Usually, only one access codes script file is needed because it corresponds to the
CRYPTO-BOX profile, which is unique for every end user.

License update plans scripts contain lists of license check conditions (performed before
update) and license update operations to be done. It is possible to generate one or more
license update plans for each project in the Smarx OS Application Framework. In other words,
each project could have several license update plans, depending on licensing and distribution
policy.

To generate the license update access codes script, launch the Smarx OS Application
Framework, open desired project and select menu item “Generate update script for OLM” in
the “WEB API and OLM” menu. Select an application (in case of AutoCrypt) or partition (in
case of Implementation with API) at the top of the window, then select the data object(s) to
be updated (changed) from the left part of the window and click the “>” button to add the
data object to the update sequence (right window). A new window opens which allows you to
change data object settings.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

6. Updating Licenses Remotely 46

Fig. 6.1:
Generate OLM license update script dialog

Repeat the steps above for other applications or data objects and click on the “Generate
update script!” button. Generated files (one or more) have to be deployed on web server, to
be used with OLM application. Each license update script file corresponds to a unique remote
update plan for selected project.

6.2.6. OLM Evaluation Demo

The OLM demo is implemented as MS VS2005 project and contains the following files:

\OLM-Demo.sln solution file

\OLM\Login.asp the startup page of the online demo

\OLM\Upload.aspx* license update script upload page. This page applies to the
evaluation demo only; in the customer’s solution a set of license
update plans will be predefined

\OLM\CheckLicense.aspx CRYPTO-BOX validation and license check script generation
page

\OLM\LicenseStatus.aspx license check results processing and submit ticket form
generation page

\OLM\ UpdateLicense.aspx ticket validation and license update script generation page

\OLM\UpdateStatus.aspx the last page of the online demo, displays the results of license
update

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

6. Updating Licenses Remotely 47

\OLM\App_Code*.* customizable interface classes (Constants,cs JSTag.cs,
OLM.cs)

\OLM\bin\WebLM.dll OLM module implemented as .NET DLL, which encapsulates
internal functionality

\OLM\data\access.xml demo CRYPTO-BOX access codes script

\OLM\pics*.* images used in the online demo

MARX Online License Management scenario consists of several steps, demonstrated
in the evaluation demo.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

6. Updating Licenses Remotely 48

Fig. 6.2:
Generate OLM license update script dialog

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

MARX Online License Management Scenario

- scripts generated and proceed with OLM

- scripts, generated and proceed with Ticket Validation System

Check Ticket validity

Generate list of available
License Update plans and

CRYPTO-BOX®
verification script Select License Update plan

Step 1

Login

Display License Update Results
Step 5

Verify CRYPTO-BOX®
and generate License Check

script

 Execute License Check
Step 2

Check License
Proceed License Check

results

Generate Ticket submission
Form

License Update Plan 1
License Update Plan 2

Display License Status
Step 3

Submit Update Ticket

SDX7-2G81-Q24B-XYZ3

Submit

Generate License Update
script

 Execute License Update

Update license

Step 4

Proceed License Update
results

Copyright © 2006, 2010 MARX® CryptoTech LP

6. Updating Licenses Remotely 49

Step 1.

At this time, end-user selects a license update plan to be applied from the list of license
update plans available (previously uploaded to the server). A set of license update plans can
be associated with each customer’s product. For evaluation purposes, it is possible to upload
license update scripts, generated in SmarxOS Application Framework. Thus, OLM demo can
be evaluated by MARX customers with a demo CRYPTO-BOX. In the customized OLM
solution, license update plans will be predefined by the customer, generated and deployed on
customer’s Web server.
After license update plan has been selected, end-user clicks on login button for client-server
handshake and CRYPTO-BOX verification. The results of CRYPTO-BOX verification and
selected license update plan are sent to server-side. OLM server module verifies CRYPTO-
BOX and generates license check scripts.

Step 2.

At this time, license check scripts are executed. License check should be performed for each
application module (partition) to be updated. In simple cases, partition existence and its
memory size are checked to allow operations with data objects. For more sophisticated
licensing strategies, product edition (special data object value) check may be required.
The license check results are sent to server-side. OLM server module proceeds with license
check results and generates form for update of ticket submission.

Step 3.

At this time, end-user submits the unique ticket value received from software vendor after
payment confirmation. The ticket is sent to the server site, where license update and
validation are demonstrated in this demo and are a part of customer's web solution, separate
from OLM functionality.

Step 4.

At this time, license update scripts are executed. License update is performed for each
application module (partition) listed in update script. The results of license update are sent to
server-side. OLM server module proceeds with license update results and outputs them on
the next page.

Step 5.

At this time, license update results are displayed.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

7. Command Line Utilities 50

7. Command Line Utilities

7.1. Introduction
In addition to the Smarx OS Application Framework (SxAF), which allows you to set up your
protection strategy and configure your CRYPTO-BOX modules via an easy-to-use graphical
interface, the Protection Kit contains a set of command line based tools duplicating
functionality of SxAF components. The advantage of these tools is that they can be controlled
from within other applications and therefore can be easily integrated into your own, specific
distribution strategy. They allow a high grade of automation when protecting applications,
configuring CRYPTO-BOX units individually for each customer, or performing remote updates.

All available command line utilities can be found in the "Drivers & Tools" section of the
Protection Kit Control Center.
AutoCrypt and SmrxProg are available for Linux and macOS, too. Please refer to
corresponding SmrxOS4Linux or SmarxOS4Mac packages at www.marx.com Support → →
Downloads. Some settings in the XML file are different for Linux and macOS, please refer to
the included readme files for details.

7.2. AutoCrypt - Command Line Version
The command line version of AutoCrypt, AC_Tool.exe, allows you to protect Windows
applications and DLLs. The AC_Tool can be called from within your application or batch file.
AC_Tool.exe can be found in the folder <SmarxOS PPK root>\Tools\AC_Tool.
AC_Tool is used in combination with SmrxProg, which performs CRYPTO-BOX programming.
See chapter 7.4 for more information on SmrxProg.

Parameter description:
AC_Tool.exe <TRX file> <XML file>
where:
<TRX file> TRX file provided to you by MARX with your customer specific CRYPTO-BOX

(cbu_demo.trx for demo CRYPTO-BOX shipped with the Evaluation Kit)
<XML file> XML file with application protection settings and CRYPTO-BOX configuration

also used by SmrxProg for further CRYPTO-BOX programming (see
AC_Test.xml as an example)
Also initial XML script file can be generated for the active SxAF project (menu
“Project”->”Generate Script for SmrxTools”). Even if not using SxAF for
protection and license management it still can be useful for XML prototype file
creation.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

7. Command Line Utilities 51

Short explanation on how to use AC_Tool:
1. Take an XML file that was generated in Smarx OS Application Framework (see chapter

4.8). Or use a text editor to customize XML data (AC_Test.xml, AC_Local.xml or
AC_Network.xml may be used as prototypes)

2. Place the TRX file (you received it with your CRYPTO-BOXes), the XML file created on the
previous step and the AC_Tool.exe file into the same directory.

3. Run the following command from the console: AC_Tool.exe <TRX file> <XML file>
4. Resulting output will be displayed on the console and also saved to AC_TOOL.LOG file.

Have a look at the readme.txt file in AC_Tool folder for detailed information and return code
description.

7.3. Document Protection - Command Line Version
Doc_Tool is a command line utility for automatic conversion and protection of documents. It
provides similar functionalities as its GUI-based counterpart in the Smarx OS Application
Framework. It can be found in the folder <SmarxOS PPK root>\Tools\Doc_Tool.

Besides protection of documents so that they can be viewed only if a valid CRYPTO-BOX is
attached to the computer, Doc_Tool provides the following options:

• License management - "Expiration Date" utilizing DataObjects;
• Customized dialogs (license agreement, expiration error).

 Documents are aggregated in Document Groups which hold license options.

To convert documents, "MARX PDF Converter" printer must be installed on the computer.
This is done automatically during Protection Kit installation.

Doc_Tool is used in combination with SmrxProg, which performs further CRYPTO-BOX
programming.

Parameter description:
Doc_Tool.exe <TRX file> <XML file>
where:
<TRX file> TRX file is provided by MARX with your customer specific CRYPTO-BOX

(cbu_demo.trx for CRYPTO-BOX shipped with the Evaluation Kit)
<XML file> XML file with application protection settings and CRYPTO-BOX configuration

also used by SmrxProg for further CRYPTO-BOX programming (see
Doc_Tool.xml as example)

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

7. Command Line Utilities 52

Short explanation on how to use Doc_Tool:
1. Take an XML file that was generated in Smarx OS Application Framework (see chapter

4.8). Or use a text editor to customize XML data (Doc_Tool.xml may be used as
prototypes).
XML-file format notes:
Leaving SOURCE_PATH or TARGET_PATH of GROUP empty tells the system to construct
them from corresponding PROJECT fields adding group's NAME (except group with
FLAG_IS_ROOT=1 which inherits project fields "as is");
If EXPIRATION_DATE is set to UNLIMITED - license will never expire.
All documents placed within certain group inherit its expiration date.
Document NAME can be set in the form of a mask (like *.pdf) - describing bunch of files.
If FLAG_IS_CONVERTED is set to 1, document is considered to be converted (thus needs
no conversion)

2. Place TRX file, XML file obtained in the previous step and Doc_Tool.exe into the same
directory.

3. Run command line: Doc_Tool.exe <TRX-file> <XML-file>
4. Results will be displayed on console and output to Doc_Tool.LOG file

Have a look at the readme.txt file in Doc_Tool folder for more information (including return
codes).

7.4. SmrxProg - Command Line Based CRYPTO-BOX Formatting
SmrxProg is a command line utility for CRYPTO-BOX formatting (programming) through
command line switches. Duplicating CRYPTO-BOX Format (GUI-based component of
CRYPTO-BOX formatting in Smarx OS Application Framework) functionality, SmrxProg can be
efficiently used for customer specific scenarios of CRYPTO-BOX programming.

SmrxProg supports:
• (re)programming CRYPTO-BOX® Label;
• creating partitions in CRYPTO-BOX memory (supports partition numbers from 101 to

65535);
• programming Data Objects and network licenses to particular partitions.
• executing extended partitions operations, like update, delete etc. (see "Extended

script format" section in the SmrxProg readme.txt for details).
• (re)programming of CRYPTO-BOX encryption keys (Private/Session AES Key/IV);
• (re)programming User Password (UPW) (see "Extended script format" section in the

readme.txt for details).

SmrxProg and its readme file can be found in the folder:

<SmarxOS PPK root>\Tools\SmrxProg

Parameter description:
SmrxProg.exe <TRX file> <INI file>
or
SmrxProg.exe <TRX file> <XML file>

where:

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

7. Command Line Utilities 53

<TRX file> TRX file provided to you by MARX distributor with your customer specific
CRYPTO-BOX hardware (cbu_demo.trx for demo CRYPTO-BOX shipped with
the Evaluation Kit)

<INI-file> INI file with CRYPTO-BOX configuration (see Test.ini as example)
<XML file> XML file with application protection settings and CRYPTO-BOX configuration

also used by SmrxProg for further CRYPTO-BOX programming (see
AC_Test.xml as example)
Also a prototype XML file can created with SxAF for the active project (menu
“Project”->”Generate Script for SmrxTools”). Even if not using SxAF for
protection and license management this option can still be useful for
automatic creation of the prototype XML script.
Another option is to use Partition Editor (PE) utility for extended XML (script)
file generation.

Short explanation on how to use SmrxProg:
1. Take an XML file that was generated in Smarx OS Application Framework (see chapter

4.8). Or use a text editor to customize XML file (the .xml sample files in SmrxProg folder
can be used as prototypes).

2. Place the TRX file distributed by MARX, the XML file obtained on the previous step, and
SmrxProg.exe in the same directory.

3. Run the following command from the console:
SmrxProg.exe <TRX file> <XML file>

4. Results will be displayed on the console and directed to the SMRXPROG.LOG file.

Have a look at the readme.txt file in SmrxProg folder for more information (including return
code and script format description.

7.5. RU_Tool - Command Line Utility for Remote Update Management

7.5.1. Overview

RU_Tool.exe allows you to perform remote update of the CRYPTO-BOX hardware. Duplicating
RUMS (GUI-based component to perform CRYPTO-BOX updates in Smarx OS Application
Framework, see chapter 6.1) functionality, RU_Tool can be integrated to your application to
automate customer specific scenarios of remote update. RU_Tool can be used in
combination with SmrxProg.exe, Doc_Tool.exe and AC_Tool.exe (see chapter 7.2 - 7.4).

See the RUMS Application Notes, chapter 3 for a detailed description of RU_Tool. The
Remote Update functionality is available as an option (one-time fee). See www.marx.com

 Shop Solutions RUMS – Remote Update for more information and pricing.→ → →

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

8. Distributing Your Software 54

8. Distributing Your Software

8.1. Installing CRYPTO-BOX Support on the Target System
After selecting the protection and licensing strategy best suited to your needs, protecting your
software and configuring the CRYPTO-BOX hardware, it is time to send everything to the end
user. At this point, it is important to make sure that the target system is configured properly to
work with the CRYPTO-BOX.

Please refer to the “Driver Installation” Application Notes for for information on installing
CRYPTO-BOX support under Windows.
Under Linux and macOS, there are no CRYPTO-BOX drivers required. Please see
instructions in the readme files of the corresponding “Smarx OS 4 Linux” and “Smarx OS 4
Mac” packages available at www.marx.com Support Downloads for further details on → →
configuring CRYPTO-BOX access under these systems.

8.2. CRYPTO-BOX Network Server Installation
The CRYPTO-BOX Network Server (CBIOS Network Server) is available for different platforms:

• Windows 32 and 64 bit versions (Windows XP and up)
• Linux 32 and 64 bit (x86/amd64/armhf/arm64)
• macOS

Please refer to the “Network Licensing” White Paper for details on installing and
configuring the Network Server on your target system.

8.3. Document Protection PDF Viewer Installation
The PDF Viewer is intended for end-users to access documents protected with Document
Protection, a solution to secure the distribution and sharing of digital documents (see chapter
4.6 for more details). MARX provides a setup package which can be shipped together with the
protected documents. It installs the PDF Viewer application and the CRYPTO-BOX device
drivers on the computer, plus sets file association for .PPD files to the PDF-Viewer. The setup
supports Windows 32 and 64 bit platforms (Windows XP and up).

The latest version of the PDF Viewer Setup can be found on our website: www.marx.com →
Support Downloads Driver and Diagnostic Tools.→ →

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

8. Distributing Your Software 55

8.4. Smarx Cloud Security and OLM Client Component
Smarx Cloud Security (WEB API) and Online License Management (OLM) ensure that only
authenticated users with a valid CRYPTO-BOX will be able to access a web portal or other
web-based online distribution solution. They also allow automated license updates via the
Internet. More details can be found in chapter 6.2.

In order to access the CRYPTO-BOX attached to the client's computer with the WEB API
server component, it is required to install the WEB API client component on this computer.

The setup installs the CRYPTO-BOX drivers for Windows and the WEB API client component,
depending on the installed browser type.

The latest version of the WEB API client setup can be found on our website:
www.marx.com Support Downloads Network Utilities→ → →

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

9. Troubleshooting with MARX® Analyzer 56

9. Troubleshooting with MARX® Analyzer

9.1. Introduction
MARX Analyzer is a powerful tool that simplifies the process of troubleshooting for
CRYPTO-BOX hardware and MARX components, providing intuitive and comprehensive
diagnostics. Its clearly structured, tree-view based output enables you to identify and resolve
problems quickly.

MARX Analyzer performs a number of tasks: It runs extensive operating system diagnostics,
detects Smarx OS libraries, components and device drivers, tests hardware and generates
detailed reports, which you can submit to our Technical Support.

9.2. Features
MARX Analyzer performs the following tasks:

• Detection of attached CRYPTO-BOX hardware.
• Analysis of installed MARX libraries, device drivers and components.
• Comprehensive network diagnostics: UDP broadcasting can be used for automated

server search or server address can be specified directly.
• Identifying problems and providing instructions for resolution.
• Report generation. A report can be saved to a file or e-mailed right from the

application.

MARX Analyzer supports all Windows operating systems from Windows 7 and up.

9.3. Using MARX® Analyzer
MARX Analyzer works like a Wizard guiding you step-by-step through the diagnostic process.
Click the "Start Diagnostics" button on the upper right side to begin.

9.3.1. Standard or Extended Diagnostic (Hardware Profile required)

By default, MARX Analyzer will always try to detect if the CRYPTO-BOX is attached to the
local USB port of the computer. It will also check LPT and COM ports for legacy CRYPTO-BOX
devices.
If a CRYPTO-BOX is found on the local computer, MARX Analyzer will ask for the hardware
profile (TRX file for Smarx OS formatted CRYPTO-BOX or MRX file for MPI) to perform
extended diagnostics and provide more detailed information on the CRYPTO-BOX to MARX
customers (not intended for end-user usage!).

The hardware profile is provided to you by MARX together with your first CRYPTO-BOX
order. Never send this file to your end-users!
MARX Analyzer will not ask for the hardware profile if a CRYPTO-BOX with demo
configuration (from the Evaluation Kit) is attached, or in network mode (see section 9.3.2).

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

9. Troubleshooting with MARX® Analyzer 57

Specify the location of the hardware profile by clicking the browse button "...", then click
"Rescan" to continue. Or press "Skip" if you do not have the hardware profile.

9.3.2. Network Diagnostic

In case the CRYPTO-BOX is available via network, MARX Analyzer can locate the network
server where the CRYPTO-BOX is attached. If your CRYPTO-BOX is attached to the local
computer and does not work in network mode, click the "Skip" button to skip the network
test. Otherwise, you can either try automatic search via UDP broadcasting (works only if the
server is located in the same sub-network) or specify the server name or IP address manually.
After that, click the "Search" button to continue.

9.3.3. Diagnostics Results

The diagnostics process may take a while, after it you will see a screen with results.

Fig. 9.1:
MARX Analyzer diagnostics result

On top of the window, you will see different tabs:
System Information
This tab provides more details about the computer MARX Analyzer is running on (CPU,
chipset, network card, USB ports, etc.).

MARX® Hardware
This tab shows information about installed CRYPTO-BOX drivers and detected CRYPTO-BOX
units. If one (or more) CRYPTO-BOX was found, additional information about it will be shown
when looking under the "Detected hardware" tree entry on the left side of the window.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

9. Troubleshooting with MARX® Analyzer 58

A yellow exclamation mark on the CBUSB (for CRYPTO-BOX XS/versa) or CBUSB2 driver
(for CRYPTO-BOX SC) means that this driver is installed, but not active. So when you have
a CRYPTO-BOX XS or Versa, it is normal that the CBUSB2 driver is not running (see Fig. 9.1
above as example).

Networking
This tab lists network servers found by MARX Analyzer (if network test was selected).
Furthermore, it will show the settings of the server, and information about attached
CRYPTO-BOX units and client applications.

Products and Components
This tab displays information about MARX components found on the computer (libraries and
plugins). Missed components will be shown with an exclamation mark.

Not all components are necessary; it depends on the field of application. For instance, the
data filtering driver is only required if the application uses data protection technology.

Running Processes
This tab shows all processes currently running on the computer which may have influence on
the communication with the CRYPTO-BOX.

9.3.4. Report Generation

The diagnostic results found by MARX Analyzer during hardware and software analysis can be
saved to a file and/or sent to our technical support team for further investigation in case of
difficulties with the CRYPTO-BOX or one of its software components. There are several
buttons on the right side of the window for this purpose:

Refresh Diagnostics
Starts the diagnostic process again with the same settings as specified before

Load Report
Allows you to load an existing MARX Analyzer report for review purposes.

Save Report
Saves the generated diagnostic report to a file (eg. for sending it to our Technical Support).

Send Report
Allows you to send the report as an e-mail to our Technical Support. When clicking on this
button, MARX Analyzer will ask you for contact information first, then it launches the installed
e-mail client and attaches the report to the e-mail.

Report Preview
Displays the information which will be included in the diagnostic report.

Print Report
Creates a hard copy of the report

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 59

10. Smarx®OS API for Developers

10.1. Overview
This part of the Compendium is intended exclusively for developers. It introduces developers
to Smarx OS architecture and internals as well as to the application programming interfaces
(APIs) supported. In this chapter and the following ones, all Smarx OS APIs are introduced
and discussed, while the latest syntax, usage details and error codes are provided in separate
e-documents.

This chapter also presents a typical scenario for developers: how to start using the Smarx OS
Protection Kit for their needs. Next, all supported platforms and environments are discussed,
including available samples, technical notes and advices on programming.

Here is an overview about all available Smarx OS APIs for the CRYPTO-BOX system:

Smarx®OS Interface Platform Language Environment

Smarx API
Simple protection API
with SxAF projects

Windows, Linux,
macOS,
Android, iOS (*)

C++ 11, C# 4.0+ MSVS 2013+, gcc
4.8+, Xcode 5+, QT 5+

CBIOS API, DO API
Advanced protection
API

Windows, Linux,
macOS,
Android, iOS

C#, F#, C/C++, Java,
Delphi, VB, VBA, Swift,
LabVIEW, MATLAB,
VFP, Scala, DMD,
IVFortran, DarkBASIC,
REALbasic

MSVS 6+, Builder 6+,
Delphi 5+, gcc 4+,
Xcode 4+ and others

RUMS API
Simple remote update
API with SxAF
projects

Windows, Linux,
macOS,
Android, iOS (*)

C/C++, Delphi MSVS 6+, Builder 6+,
Delphi 5+

RFP API
Advanced remote
update API

Windows, Linux C#, C/C++, Delphi, VB MSVS 6+, Builder 6+,
Delphi 6+

* Windows platform is supported now, other platforms will be supported in future or on request.

See chapter 10.12 for a table of libraries provided in different formats for various target
platforms/IDEs.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 60

To preserve a better overview, every API providing certain functionality is placed into a
separate chapter:

API Remarks Chapter
Smarx API High level API for the CRYPTO-BOX which exposes a simple and

user friendly programming interface to developers than other
Smarx OS based APIs (CBIOS/DO API).

11

CBIOS API Standard API for the CRYPTO-BOX SC, XS and Versa models.
Includes functions for CRYPTO-BOX search and identification,
access to its internal memory and encryption functions.

12

CBIOS
Networking

Special subset of the CBIOS API allowing access the
CRYPTO-BOX on networks and perform network licensing -
defining a number of running instances of the protected
application to be launched run in a network

13

DO API Data Objects API, subset of the CBIOS API which provides a
convenient way to create and access various objects for
licensing purposes, such as expiration dates, counters,
passwords or self-defined objects.

14

RFP API Remote Update API to update the CRYPTO-BOX directly on the
end-user side. Intended for customers who prefer advanced API
integration instead of using tools provided by MARX (RUMS
component in SxAF or "RU_Tool.exe" command line tool)

15

CBIOS4NET/
Smarx4NET

Implementation of all APIs mentioned above as object oriented,
components based approach for .NET developers.
For detailed description and Developer's Guide, see PPK Control
Center, section "Implementation with API” “API →
Components”.

10.13.2

Extended
API (XSMRX)

Provides CRYPTO-BOX formatting features for customers who
prefer API integration instead of using tools provided by MARX
(SxAF or "SmrxProg.exe" command line tool)

16

Further APIs (documentation provided separately):

API Remarks
DP API Data Protection API, allows to encrypt sensible data coming with your

application (such as databases, calculations, logs, statistics, documents,
video/audio, etc.) on the fly, so that they cannot be read without having
proper CRYPTO-BOX attached.
For detailed description and Developer's Guide, see see PPK Control
Center, section “Implementation with API” “API Components” “e) → →
Data Protection (DP) API”.

WEB API
(Smarx
Cloud
Security)

Authenticate users via Internet/Intranet and update the CRYPTO-BOX.
Ideal for online licensing and subscription services.
For detailed description and Developer's Guide, see "Cloud Security"
section in the PPK Control Center.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 61

MPI-formatted CRYPTO-BOX units cannot be accessed with Smarx OS based API functions,
but can be converted in most cases. Please contact support@marx.com for more
information on MPI to Smarx OS conversion.

10.2. Sharing CRYPTO-BOX® Memory Between Different Applications
Smarx OS solves this task by providing every application with its own partition(s). Partition is a
set of memory areas in the CRYPTO-BOX RAM1/2/3 memory zones, storing protection and
licensing data of this application. Partition can be considered as a virtual CRYPTO-BOX
allocated for this application. This eliminates memory conflicts with other applications. Every
Smarx OS partition:

• is associated with an application;
• is identified through its partition number.

Every partition has associated memory allocated in one or more memory areas – depending
on the protection logic required:

• RAM1 area – user password (UPW) is required for read/write access (ideal for data which
might be changed on the end-user side during application rumtime, such as counters);

• RAM2 area – UPW is required for read access and APW must be provided for write access
(ideal for data which will not be changed after initial CRYPTO-BOX formatting, such as
customer information);

• RAM3 area – free access area.

The CRYPTO-BOX SC (CBU SC) contains 2 additional memory areas: RAM4 and RAM5.
RAM4 can be used to store RSA keys for CBU SC hardware-based RSA encryption, RAM5
stores additional AES keys for hardware-based AES encryption. See chapter 10.10.2 and
10.10.3 for more information.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 62

Fig. 10.1:
CRYPTO-BOX memory allocation concept

The following table shows partitions associated with important applications and services.
Partitions related to predefined components and services are printed in gray:

AppID Name Description Occupied memory
(by default)

RAM1 RAM2 RAM3

4 AutoCrypt Automatic protection of Windows
applications

200 0 0

5 LCS License Management Table of Smarx OS
License Control System: network license
management for protected applications

0 240 0

6 DOC Protection Document Protection 300 0 0

...

10 Product Edition Smarx OS Product Edition functionality 48 0 0

...

98 RUMS Remote Update Management System
(RUMS) – special internal zero-sized
partition

0 0 0

...

100 User defined Partitions with AppID 100 and larger are
customer specific

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 63

...

999 MARX samples This partition is used for all MARX samples
and demos

1024 32 32

Create your own partitions in the CRYPTO-BOX memory to store licensing information!
Partitions (and their content) can be added to the CRYPTO-BOX creating an
“Implementation with API” project in the Smarx OS Application Framework (see chapter
4.5) or using the SmrxProg command line tool (see chapter 4.8). These tools will adjust
RAM1/2/3 sizes automatically depending on required space for the specified Data Objects.
Alternatively, the XSMRXCOM API (see chapter 16) can be used to distribute the
CRYPTO-BOX memory. Later, this content can be queried via API with your preferred IDE
(see chapter 10.12).

The partition number (AppID) range for customer specific partitions can be 100 up to 65000.
The maximum number of partitions per CRYPTO-BOX is 32. If this is not enough, you can
share one partition with multiple applications.

The only limitation for RAM1/2/3 sizes of each partition is the total physical memory of the
CRYPTO-BOX (4/32/64 KB, depending on the CRYPTO-BOX model).

10.3. Access to One CRYPTO-BOX for Different Processes/Threads
By using special OS level kernel objects Smarx OS allows concurrent processes or even
threads of one process to access CRYPTO-BOX concurrently. This means that if one
thread/process A is trying to access CRYPTO-BOX which is busy at the moment processing
another request from a different thread/process B, then process A will wait until Smarx OS
finishes the currently processing request.

This approach allows a concurrent usage of MPI and Smarx OS applications.

10.4. Caching CRYPTO-BOX Calls
To increase operating speed during concurrent access a special encrypted read cache is
implemented. All data to be read from or written to the box are saved to this cache and are
retrieved from cache for further read operations. The cache is implemented as a read cache
only, write behind is not supported.

10.5. CRYPTO-BOX Plug In/Plug Out Notifications
Smarx OS kernel (CBIOS – CRYPTO-BOX Input/Output System) “listens” for OS hardware
notifications on USB events and refreshes its internal global tables automatically. Thus CBIOS
does not perform time-consuming physical box scanning, but only returns the number of
currently attached boxes, when the application asks for the current MARX hardware
configuration. It is also possible to receive CBIOS notifications by defining a callback function
or as Windows messages.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 64

10.6. MARX Digital Signature
MARX digital signature is a special system object residing in every Smarx OS formatted
CRYPTO-BOX. It prevents unauthorized duplication of a digitally signed CRYPTO-BOX.

10.7. Establishing Secure Communication Channel, Document
Submission, Remote Update

Every Smarx OS formatted CRYPTO-BOX/ CRYPTO-BOX SC contains two additional system
objects: two RSA keypair for establishing secure communication channels/document
exchange. In particular they are used for Remote Update (RUMS) technology and WEB API.

You as a software vendor will obtain two unique RSA key pairs from MARX. One of them
defines your side, another will define the end user side: their CRYPTO-BOX. A CRYPTO-BOX
that was formatted for Smarx OS and programmed within one project of one customer has the
same end user side RSA key pair. The end user side RSA keys (two RSA keys stored in the
CRYPTO-BOX memory) are:

• the private RSA key of the CRYPTO-BOX (Client's Private Key);
• the public RSA key of the Distributor (Distributor's Public Key).

In turn you as the software distributor will have two other RSA keys (the distributor's side RSA
keys):

• your private RSA key;
• public RSA key of the CRYPTO-BOX.

Using these system objects together with Remote Update Management System or WEB API
(Web Security) offers high flexibility when integrating the CRYPTO-BOX into your commercial
solutions. Features such as remote authentication, remote update, and secure document
submission can be easily implemented based on these objects and the CBIOS API.

10.8. Symmetric Encryption (AES/Rijndael)
All CRYPTO-BOX models for USB port include a hardware implementation of the 128 bit AES
(Rijndael) symmetric encryption algorithm – OFB (output feedback) mode. Three encryption
keys are embedded into the firmware: Session, Private and Fixed.

Every key contains: the encryption key itself (16 bytes value) plus the associated Initialization
Vector (IV) that takes another 16 bytes.

There is no way to read the Rijndael encryption key value or associated IV (initialization
vector) from the CRYPTO-BOX. It can only be used for encryption. This logic allows
developers to implement strong authentication, verification, general software and/or data
protection by comparing footprints, encrypting/decrypting some key data structures, etc. The
Session Key (and its IV) can be used and reprogrammed by any application without password
submission. The Private Key (and its IV) requires the User Password for usage and the Admin
Password for reprogramming. The Fixed Key and its IV is hard coded and cannot be
reprogrammed. Every MARX customer has the same values for hardware Rijndael keys
initially programmed to all his CRYPTO-BOX units.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 65

The CRYPTO-BOX SC supports more than 3 AES key slots, as well as CBC mode. See
chapter 10.10.2 for details.

10.9. Asymmetric (RSA) Encryption
MARX associates two unique RSA key pairs with every customer: The distributor’s key pair
and the client’s key pair.

Every Smarx OS formatted CRYPTO-BOX programmed for a particular customer will contain
the client’s private key and the distributor’s public key. The customer receives two keys (the
distributor’s private and the client’s public key) included in the TRX file. The keys can also be
provided as binary files. These two key pairs are used by Smarx OS in RFP (Remote Field
Programming) and WEB API interfaces to establish and support secure communication
channels. They can also be used for various customer specific “distributor <-> end user”
scenarios.

There are two special CBIOS calls working with these keys:
CBIOS_EncryptInternalRSA()/CBIOS_DecryptInternalRSA()

For the CRYPTO-BOX SC these internal RSA calls are based on hardware RSA
implementation (see chapter 10.10.3), for the CRYPTO-BOX XS and Versa a software-
based implementation (on driver level) is used.

The RSA encryption for the CRYPTO-BOX XS and Versa (CBU) is implemented inside the
system level software: driver and low-level library. This implementation is supported by the
Smarx®OS API and used in various MARX solutions and technologies, such as: WEB API, OLM
and Remote Update.

The RSA implementation in the CBU driver uses different padding rules comparing to other
popular RSA implementations (e.g. OpenSSL, WinCrypt, etc.), which use PKCS#1 padding
rules:

PKCS#1 Padding Rules
 D: data
 P: padding, (k - 3 - length of D) bytes, where k: key length in bytes

Encryption

 - Public Key encryption:
 00 || 02 || P || 00 || D
 P: pseudorandom, nonzero bytes

 - Private Key encryption:
 00 || 01 || P || 00 || D
 P: all bytes have value 0xFF

Decryption

- Public Key decryption (message was encrypted with private key):

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 66

• after decryption checks for block starting with 00 || 01
• checks for 0xFF padding bytes
• gets beginning of data from 0x00 separator

- Private Key decryption (message was encrypted with public key):
• after decryption checks for block starting with 00 || 02
• gets beginning of data from 0x00 separator

While the actual (pure) RSA operations are just Encryption and Decryption, however there are
four RSA operations after taking these standard padding rules into account:

 RSA Public Encryption
 RSA Private Encryption
 RSA Public Decryption
 RSA Private Decryption

Padding Rules Used in CBU RSA Implementation
The RSA implementation in the CBU driver uses a slightly different RSA padding:

 D: data
 L: length of DATA
 P: padding, (k - 4 - length of D) bytes, where k: key length in bytes

 - Encryption:
 00 || 01 || L || P || 00 || D
 P: all bytes have value 0xFF

- CBU Decryption
• after decryption checks for block starting with 00 || 01
• gets L
• checks for 0xFF padding bytes
• checks for 0x00 separator

As a consequence of this approach the CBU RSA implementation is not compatible to
standard RSA implementation conforming to the PKCS#1 padding rules. However if a crypto
library has API calls for the plain RSA operations without any padding, they can be used to
implement CBU compatible padding.

For the CRYPTO-BOX XS and Versa (CBU) MARX provides RSA implementation sources with
CBU compatible padding for such popular environments as Java, PHP, and C#.NET as a part
of the Smarx Cloud Security (WEB API) solution. These sources are based on standard RSA
implementation adjusted for CBU RSA padding rules:

• included to GMP.PHP and BCMath.PHP
• provided by: http://www.bouncycastle.org for Java and C#.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

http://www.bouncycastle.org/

10. Smarx®OS API for Developers 67

The CRYPTO-BOX SC supports additional RSA key slots, as well as standard PKCS#1
padding rules. See chapter 10.10.3 for details.
The Smarx OS API also includes pure software based RSA for both padding modes
(identical to CBU SC hardware implementation) - it allows to consider CBU XS and Versa
models as RSA key storage for solutions with entry level security requirements.

10.10. CRYPTO-BOX®SC Specific Functions

10.10.1. Compatibility of CRYPTO-BOX XS/Versa and CRYPTO-BOX SC

The CRYPTO-BOX SC (CBU SC) is fully supported by Smarx OS. Being 100% backward
compatible with the CRYPTO-BOX XS and Versa (CBU XS/Versa), the CBU SC can simply
replace it for all existing applications and solutions where the CBU XS or Versa models are
currently used. Even this simple replacement will mean: ultra-fast CBU SC with 32KB of RAM.
Plus hardware based RSA implementation, which automatically increases security for Remote
Updates of licenses. The Smarx Cloud Security, OLM (Online License Management) and RU
(Remote Update) solutions are built on top of RSA.

However 100% backward compatibility should be considered as an entry level only. Besides
CBU XS/Versa compatibility, the CBU SC brings a lot of brand new features and options for
Smarx OS customers, in particular:

10.10.2. CRYPTO-BOX SC AES Encryption Extension

While the CRYPTO-BOX XS and Versa (CBU XS/Versa) models include only three dedicated
AES keys (Fixed, Private and Session, see chapter 10.8), the CRYPTO-BOX SC (CBU SC)
additionally contains a special new memory zone (RAM5) which can securely hold as many
extra AES keys as required (only limited by the memory size). Moreover, besides OFB (output
feedback) mode of AES encryption supported by CBU XS and Versa, the CBU SC allows you
to choose between OFB and CBC (cipher block chaining) encryption modes for AES keys
stored in RAM5 memory zone.

The RAM5 memory zone only allows you to write the key values and use them for encryption;
there is no way to read the key values. During creation of the keys in this zone, it is possible to
specify access rights for these keys: User Password (UPW) or Admin Password (APW) is
required to use this key for encryption or to change its value. Furthermore, it is possible to
lock the key (for instance, in case a cracking attempt was detected).

This new functionality is used by AutoCrypt to protect more than one application with one
CRYPTO-BOX SC using separate encryption. In case of API based protection developers are
able to use as many AES keys as necessary by the product licensing logic. Also such MARX
technologies as Document Protection, Data Protection, Media Protection and Web based
communication benefit from this functionality, providing higher level of security and
customization.

To help developers incorporating the extended AES functionality to their programs the DO API
includes a special data object type - "AES key"- TEOSDO_AES.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 68

10.10.3. Using Hardware Based RSA of the CRYPTO-BOX SC

The CBU SC includes RSA implementation in its firmware. It contains a special memory zone
(RAM4) storing RSA keypairs. There is no way to read key values; they can only be used for
encryption. Special access restrictions can be added: APW/UPW login requirements for
encryption and/or changing key values.

The CRYPTO-BOX XS and Versa (CBU XS/Versa) uses non-standard padding rules for RSA
encryption (see chapter 10.9 for details). For compatibility purposes the CBU SC firmware
RSA implementation uses the same padding rules as the CBU XS/Versa. In addition it also
includes standard PKCS#1 padding rules, so developers can integrate CBU SC hardware
based RSA to a wide range of standard and customer specific security solutions. The API
related calls include a special parameter (dwMode) reserved for defining padding rules: CBU /
PKCS#1 modes.

OpenSSL or any other open RSA implementation (for example, see www.bouncycastle.org)
can be used on the server (trusted side), while CBU SC based RSA will be used by clients.
Besides, an extended number of RSA key-pairs securely stored in RAM4 allow developers to
use them also for software protection and licensing needs.

To help developers incorporating this new RSA functionality to their programs the following
improvements are introduced in the Smarx OS API:

• In addition to currently supported driver level RSA implementation the Smarx OS API also
supports hardware based RSA for the CRYPTO-BOX SC

• A special encryption mode fully compatible with PKCS#1 padding rules is supported in
addition to the existing RSA support with non-standard padding mode

• CBIOS starting from version 1.5 also includes software based RSA for both padding modes
(identical to CBU SC hardware implementation) - it allows to consider CBU XS and Versa
models as RSA key storage for solutions with entry level security requirements

• A new data object - "RSA keypair" (TEOSDO_RSA) is introduced in DO API helping
developers with RSA integration

10.11. Smarx®OS API: Local and Network Modes
The Smarx OS API covers two scenarios:

• Local access: The CRYPTO-BOX is attached to the local computer (i. e. the computer on
which the application runs).

• Network access: The CRYPTO-BOX is attached to a remote computer (server); the
application running on the local computer (client) accesses the remote computer through
the network.

Local and network access is supported for all available Smarx OS APIs (see next chapter). A
special case is Smarx4NET which works solely in network mode.

For more details on network access refer to chapter 13.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 69

10.12. Using Smarx®OS Under Different Platforms

10.12.1. Overview

Depending on the platform (OS) and programming environment used, Smarx OS APIs (CBIOS
local and network, DO, RFP) are provided in different formats, as:

• Static libraries;
• Dynamic libraries (DLL);
• .NET assembly (Managed DLL);
• COM;
• Native DLL/SO.

Static libraries are the most secure way of linkage. They are provided for most of supported
programming environments under Windows, Linux and OS X platforms, including: Microsoft
C/C++, Borland C Builder, Delphi environments, and GCC.

Dynamic libraries (DLLs) allow easy, but less secure linkage. DLL based implementation
should be considered only if for some reasons no other options can be used (static library,
COM). When using DLL try to improve the level of protection and licensing logic for your
application (using hardware based encryption, keeping vital data in the CRYPTO-BOX, using
parallel threads, etc.), making it difficult to emulate this logic by replacing the DLL. DLLs are
provided for some environments of Windows (x86 and x64) platform where static linkage is
not applicable, there is a special DLL (CBIOSVB6.DLL) for Visual Basic 6.0 environment.

For .NET developers, Smarx4NET or CBIOS4NET is the most recommended approach. It
provides .NET developers with an object oriented, component based approach, simplifying
integration of protection and licensing to .NET applications (see 10.13.2 for more details).

 COM/ActiveX is the Windows platform specific interface standard. This interface format is
universal and can be used from almost any Windows programming environment. Required
Smarx OS ActiveX objects are included to CBUSetup.exe driver installation utility (see chapter
8) and are installed and properly registered together with CRYPTO-BOX driver. Native
DLL/native SO are specific to Java environment (Windows and Linux correspondingly).

10.12.2. Table of available Smarx®OS Libraries

The following table summarizes al available Smarx OS libraries and provides details on their
target audience and supported environments:

Smarx®OS
library

Target audience Smarx OS
Interfaces

Platform Language Environment

SmarxCPP
static library

If you develop apps in C++
11, you can validate license
with only one call using
higher abstract layer Smarx
API or develop your
licensing model with
enhanced C++ classes

Smarx,
*RUMS,
CBIOS, DO API

Win,
Linux,
macOS,
*Android,
*iOS

C++ 11 MSVS 2013+,
gcc 6+,
Xcode 9+, QT 5+

CBIOS static
library

For C/C++, Delphi, Swift,
COBOL, MATLAB, IVFortran
developers

CBIOS, DO,
RUMS API

Win, Linux,
macOS,
Android

C/C++, Delphi,
Swift, COBOL,
MATLAB,

MSVS 6+, Builder
6+, Delphi 5+,
gcc 6+, Xcode 9+

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 70

IVFortran and others

CBIOS dynamic
library

For: LabVIEW, VFP, DMD,
DarkBASIC, REALbasic
developers

CBIOS, DO API Win, Linux,
macOS

LabView, VFP,
DMD,
DarkBasic,
REALbasic

*

CBIOS4NET
assembly

For .NET developers
See chapter 10.13.2 for
details and differences
between Smarx4Net and
CBIOS4NET
Note: Smarx API (Higher
abstract layer) is
implemented only for
CBIOS4NET

Smarx,
*RUMS,
CBIOS, DO,
RFP, DP API

Win x86, x64 C#, VB,
C++.NET

MSVS2005+

Smarx4Net
assembly

CBIOS, DO,
RUMS API

Any CPU C#, VB,
C++.NET

MSVS 2013+,
Mono C#

JNI CBIOS
dynamic library

It is for Java, Scala
developers

CBIOS, DO API Win, Linux,
macOS

Java, Scala Java 6+ SDK,
Eclipse SDK 3.7+

Smrxw COM
library

Obsolete COM model,
except for using it with VBA

CBIOS, DO API Win (Any) VBA,
C#, VB,
C++.NET,
Delphi

*

RFP static
library

RFP API allows to update
the CRYPTO-BOX directly
on the end-user side. In
contrast to RUMS (see
chapter 6.1) it provides
maximum flexibility.
Available for C/C++ and
Delphi.

RFP API Win, Linux C/C++ MSVS 6+, gcc 4+

RFP dynamic
library

Win Delphi Delphi 6+

Smarx®OS Data
Protection

If you distribute your
software together with
sensitive and valuable data
files, you will require reliable
protection not only for your
app itself but also for the
associated data files your
app works with.

DP API Win C#, Delphi MSVS 2005+,
Delphi 7+

* To be implemented

10.13. Supported Environments: Windows

10.13.1. Microsoft Visual C/C++ 6.x and up

If you develop in C++ 11.0 or higher, you may consider Smarx API, a highly abstracted layer
which makes implementation very easy (see chapter 11)

If you need more features and full control, have a look at our object oriented SmarxCpp static
library. For more details on SmarxCpp and sample code, see PPK Control Center →
Implementation with API Libraries/Samples→

For Microsoft Visual C/C++ starting from version 6.0, Smarx®OS API is implemented as static
CBIOS.LIB library. See chapter 12 for details.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 71

Sample code on SmarxCpp and CBIOS implementation can be found in PPK Control Center
under: Implementation with API Libraries/Samples→

10.13.2. Microsoft .NET Platform

The .NET Framework environment, intensively developed by Microsoft, provides developers
with extended flexibility and portability of their projects.

The .NET Framework consists of two main parts: the common language runtime (CLR) and
the class library (FCL). CLR provides common services for applications developed for
the .NET platform. Applications can be written in any language supporting CLR (C++, C#, VB).
CLR simplifies writing code by providing support for memory management, security
management, error handling. .NET Framework class library includes a standard set of classes
to help a developer with common tasks.

Managed code is code that has its execution managed by the .NET Framework CLR rather
than directly by the operating system. An application written as managed code gains CLR
common services.

With CBIOS4NET and Smarx4NET, MARX provides an object oriented component based API
for .NET platform which combines multiple Smarx OS programming interfaces (see chapter
10.1):

Smarx4NET combines CBIOS Networking, DO and RFP programming interfaces under one
roof for .NET and .NET Core developers.

CBIOS4NET combines all SmarxOS programming interfaces (including local CBIOS and DP
API) under one roof for .NET developers.

Based on CBIOS4NET, MARX offers with Smarx API a highly abstracted layer which makes
CRYPTO-BOX implementation very easy – without dealing with API function calls! Refer to
chapter 11 for more details on Smarx API.

APIs for .NET – Overview:

IDE .NET Local &
Network

Mode

Platform Requ.
Redistrib
utable **

PPK
Assembly

PPK Path*** MSI / MSM
(Redistributable)

MS
VS
2013
+

4.5.1+ * Any CPU - Smarx4Net.
dll

\dotNET4.5\
Any CPU

\SMARX4NET\
SMARX4NET.msi,
SMARX4NETMergeModule.
msm

.NET for
Windows
Store

SmarxRunti
me.winmd

\WRC -

4.x Yes x86, x64

(platform
specific
loader

VC
Redist
2013

CBIOS4NET.
dll

\dotNET 4\x86\
signed,
\dotNET 4\x64\
signed

\CBIOS4NET\
CBIOS4NET_x86.msi,
CBIOS4NET_x86_x64.msi,
CBIOS4NetMergeModule.
msm

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 72

CBIOSLoa
der.cs
for .NET
2.0-3.5)

VC
Redist
2010

\dotNET 4\
Obsolete\x86,
\dotNET 4\
Obsolete\x64

\Obsolete\CBIOS4NET\
CBIOS4NET_x86.msi,
CBIOS4NET_x86_x64.msi,
CBIOS4NetMergeModule.
msm2.0 - 3.5 VC

Redist
2005

CBIOS4NET.
dll,
CBIOS4NET
64.dll

\dotNET 2\asm
signed

MS
VS
2010
-
2012

4.x VC
Redist
2010

CBIOS4NET.
dll

\dotNET 4\
Obsolete\x86,
\dotNET 4\
Obsolete\x64

MS
VS
2005
-
2008

2.0-3.5 VC
Redist
2005

CBIOS4NET.
dll,
CBIOS4NET
64.dll

\dotNET 2\asm
signed

* Smarx4Net requires CBIOS Network Server for local mode
** Included to MSI/MSM
*** See [PPK root folder]\SmarxOS\API\Win\SDK

For detailed information on Smarx4NET/CBIOS4NET (including class reference), please
refer to the CBIOS4NET Developer's Guide which is available at www.marx.com Support →

 Documents White Papers.→ →

Differences between Smarx4NET and CBIOS4NET:

1. Both interfaces are close to each other. Some methods and type names are different.

2. Smarx4NET supports network mode only: if using on a single computer, the CBIOS
Network Server must be running on localhost or on a remote computer (see chapter
5). CBIOS4NET supports both local and network modes.

3. Smarx4NET is a managed library and does not need VC Redistributables. It only
requires Framework.NET 4.5 or later. CBIOS4NET supports .NET framework version
2.0 and up, too, but requires VC redistributable of the corresponding MS Visual Studio
environment.

4. Smarx4NET does not requires a platform specific (x64 or x32) assembly as
CBIOS4NET does

5. Smarx4NET is based on interfaces, not on classes like CBIOS4NET. Class instance
creation is performed through class factory (Smarx class)

6. Smarx4NET supports quick search of servers & attached hardware for net
broadcasting (see SmarxNetworkLicensing sample in PPK). Direct connect won’t
hang up even when server is switched off (happens on CBIOS4NET network mode)

Conclusion:

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 73

The biggest advantage of Smarx4NET compared to the older CBIOS4NET interface: it is fully
managed code which makes implementation more flexible and requires no VC
redistributables to be preinstalled. It supports standard C# applications as well as .NET Core
applications, and is ideal for protecting multi-device applications for multi-platform desktop
and mobile usage. Smarx4NET runs in network mode only, which requires an installation of
the CBIOS Server (either on the same computer or in the network).

However, if you already use CBIOS4NET, support only local licensing scenario in your .NET
application and you do not need multi-platform support, it makes sense to stay with
CBIOS4NET.

10.13.3. Microsoft Visual Basic 6.x

Microsoft Visual Basic support is implemented as a special wrapper for the VC++ static CBIOS
library. The resulting dynamic library is distributed as CBIOSVB6.DLL. Its interface section
contains the same set of functions as described in the CBIOS API part of this Compendium
(chapter 11). All functions have the same name as their C counterparts. Parameter types,
however, are specific to Visual Basic.

The differences between the C and Visual Basic CBIOS APIs are as follows:

• All defined directives without parameters (error codes, etc.) are replaced by Visual Basic
constants with the same names.

• All structures are replaced by VBasic types.
• VBasic byte array types are used instead of C array arguments. To submit pointer on array

or structure the proper VBasic type reference is submitted (ByRef keyword)
• CBIOS_BYTEARRAY16 type is defined as byte massive(16). CBIOS_BYTEARRAY16 type is

used for all password and serial number arguments and also in CBIOS_SetKeySession,
CBIOS_SetIVSession, CBIOS_SetKeyPrivate and CBIOS_SetIVPrivate, CBIOS API calls for
the AES/Rijndael key and initialization vector

• CBIOS_BYTEARRAY_LABEL type is defined as byte massive(CBIOS_LABEL_LEN).
CBIOS_BYTEARRAY_LABEL type is used for all CRYPTO-BOX label arguments

• THandle type is defined as Pointer

The sample (available in Smarx OS PPK) is written entirely in Visual Basic and performs the
same tasks as its C counterpart.

10.13.4. Borland C/C++ CBuilder 5,6, BDS 2006, RAD Studio 2007 and up

The CBIOS library for Borland C/C++ is built from the same C sources as those used for the
Microsoft Visual C/C++ build. So CBIOS API for CBuilder is the same as for Microsoft Visual
C/C++ but the library (OMF format) can be used in projects of corresponding CBuilder C/C++
environment. The sample included is also identical to the Microsoft Visual C/C++ version.

10.13.5. Embarcadero Delphi 5 and up

The Delphi CBIOS library is implemented as a wrapper for the CBuilder CBIOS library. It uses
static linking with CBuilder-generated object files (via {$LINK} Delphi compiler directive) for
improved security. The resulting library is distributed in the form of the Delphi compiled unit
CBIOS.DCU. Its interface section contains the same set of functions (including extended

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 74

CBIOS API calls) as described in the CBIOS API Developer's Guide (can be found in the
"Documentation" section of the Smarx OS Control Center). All functions have the same
names as their C counterparts.

The parameter types, however, are specific to Delphi. The differences between the C and the
Delphi CBIOS APIs is as follows:

• All defined directives without parameters (error codes, etc.) are replaced by Delphi
constants with the same names.

• All defined directives with parameters are replaced by functions with the same names.
• All structures are replaced by packed records.
• Delphi pointer types are used instead of C array arguments. This is done because NULL is a

valid argument value in those C functions and because array and pointer are different types
in Delphi.

• TByteArr16 type is defined as array [0..15] of Byte and PTByteArr16 as pointer to
TByteArr16. The PTByteArr16 type is used in CBIOS_SetKeySession, CBIOS_SetIVSession,
CBIOS_SetKeyPrivate and CBIOS_SetIVPrivate, CBIOS API calls for the AES/Rijndael key
and initialization vector.

• TPasswd type is defined as array [0..15] of Byte and PTPasswd as pointer to TPasswd. The
PTPasswd type is used for all password arguments.

• TBoxLabel type is defined as array [0..CBIOS_LABEL_LEN-1] of Byte and PTBoxLabel as
pointer to TBoxLabel. The PTBoxLabel type is used for all box label arguments.

• TSerNum type is defined as array [0..15] of Byte and PTSerNumas pointer to TSerNum.
The PTSerNum type is used for all serial number arguments.

• THandle type is defined as Pointer.

Sample code is available in the Smarx OS Protection Kit (PPK). It is written entirely in Delphi
and performs the same tasks as its C counterpart.

10.13.6. Java (Sun JDK 1.6 and up)

The Java CBIOS component is implemented as Java wrapper over static library CBIOS.LIB. It
consists of:

• Dynamically linked modules (jnicbios.DLL),
• A collection of Java classes implementing the interface to access native methods of CBIOS.

Java classes are released as com.marx.jcbios package. This package is a wrapper using the
Java Native Interface (JNI) to call native methods. Since the native programming interface for
Java is part of the JDK, Java applets/applications can be developed using pure Java. If you
want to make sure that your code is completely portable between Windows, Linux and OS X
platforms, write your programs in Java using JCBIOS.

The Jcbios package consists of the following classes:

Jcbios.class wrapper class containing native method calls;

Constants.class class containing constants, error codes;

ErrorHandler class used for error handling;

CBIOSAppInfo auxiliary class used by Jcbios methods to pass parameters;

CBIOSBoxInfo auxiliary class used by Jcbios methods to pass parameters;

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 75

CBIOSInteger auxiliary classused by Jcbios methods to pass parameters;

CBIOSRSAPrivateKey auxiliary classused by Jcbios methods to pass parameters;

CBIOSRSAPublicKey auxiliary class used by Jcbios methods to pass parameters.

The Smarx OS solution for Java assumes that Java applet/application communicates with
CRYPTO-BOX devices through JCBIOS. Using JNI allows developing Java applet/application
using only pure Java.

For security reasons it is highly recommended to invoke jcbios methods via SSL.

10.13.7. Qt/MinGW

Qt is an Open Source application development framework which creates cross-platform
applications under C++ (see http://qt.digia.com for more details). Access to the CRYPTO-BOX
is provided via the static libCBIOS.a library which is based on the static Linux library for GCC
(MinGW for Windows platform) and contains the same set of functions as described in CBIOS
API part (see chapter 11). All functions have the same names as their C counterparts.

Standard sample code is available in the Smarx OS PPK.

10.14. Supported Environments: Linux
The “Smarx OS for Linux” package is available at www.marx.com/downloads (MyMARX login
and valid Support Level Option required).

Smarx OS for Linux doesn't require a special USB kernel driver for the CRYPTO-BOX.

10.14.1. Installing CRYPTO-BOX Support Under Linux

Smarx OS support is provided for i386/amd64/armhf/arm64 Linux platform. It was tested on
the following Linux distributions (as at December 2021, but should also work with recent
Linux distributions – just contact us in case of any compatibility issues):

• Ubuntu 18.04 and 20.04, 64bit
• OpenSUSE Leap 15.2, 64bit
• Debian 10, 32bit
• Raspberry Pi OS 5.10, 32 and 64bit (tested on Raspberry Pi 3 and 4)

Accessing the CRYPTO-BOX on Linux systems requires Read-Write permissions trough libusb.
By default only root has such permissions.

You can use udev rules to configure CRYPTO-BOX permissions. Just copy 10-cryptobox.rules
file to /rules.d directory: (root rights required):
 $ sudo cp 10-cryptobox.rules /etc/udev/rules.d/
and reattach your CRYPTO-BOX for signalizing udev system to reload rules.

Alternatively, access rules can be set by installing packages containing them. The
network_server package (containing the CBIOS Network Server for Linux) will automatically
configure udev rules for CRYPTO-BOX access during installation.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

http://www.marx.com/downloads

10. Smarx®OS API for Developers 76

The standard libusb (version 1.0) is trequired to build applications with CRYPTO-BOX support
targeting Linux platforms. It can be either downloaded from its official site
http://www.libusb.org and installed manually or installed using apt-get (Ubuntu), yum
(Fedora) or any other package management system.

For example, in Ubuntu command line execute command:
 $ sudo apt-get install libusb-1.0-0-dev
 $ sudo apt-get install libudev-dev

In OpenSUSE Linux:
 $ sudo zypper install libusb-1_0-devel
 $ sudo zypper install libudev-devel

If you get a "LOCK_TIMEOUT" error when accessing the CRYPTO-BOX, try this: Remove all
CBIOS mutex files from /tmp. Their names start with "CBIOS_" or "SH_MEM_MUTEX".
This error can occur, when CBIOS was started with root privileges and then terminated
incorrectly resulting in the mutex files not being cleared.

10.14.2. GCC

The static library libcbios.a is available in /api/sdk/static folder of the Linux package.

Sample code for accessing the CRYPTO-BOX under Linux using GCC can be found in
/api/samples folder.

10.14.3. Qt

Qt is an Open Source application development framework which creates cross-platform
applications under C++ (see http://qt.io for details). Access to the CRYPTO-BOX is provided
via the static libCBIOS.a library which is based on the static library for GCC (see 10.14.2) and
contains the same set of functions as described in CBIOS API part (see chapter 11). All
functions have the same names as their C counterparts.

Sample code is available in the /api/samples folder. It is written entirely in Qt and performs the
same tasks as its C counterpart.

10.14.4. Java (Sun JDK 1.6)

The Java CBIOS component is implemented as a Java wrapper through the static libcbios.a
library (see 10.14.2). It consists of:

• Dynamically linked module (libjnicbios.so)
• Collection of Java classes implementing an interface for accessing native CBIOS methods.

The Java classes are released as a com.marx.jcbios package. This package is a wrapper using
the Java Native Interface (JNI) to call native methods. Since the native programming interface
for Java is part of the JDK, developing Java applets is possible using only pure Java.

By writing programs in Java using JCBIOS you can make sure that your code is completely
portable between the Windows, Linux and macOS platforms.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

http://www.libusb.org/

10. Smarx®OS API for Developers 77

The Jcbios package consists of the following classes:

Jcbios.class wrapper class containing native method calls;

Constants.class class containing constants, error codes;

ErrorHandler class used for error handling;

CBIOSAppInfo auxiliary class used by Jcbios methods to pass parameters;

CBIOSBoxInfo auxiliary class used by Jcbios methods to pass parameters;

CBIOSInteger auxiliary classused by Jcbios methods to pass parameters;

CBIOSRSAPrivateKey auxiliary classused by Jcbios methods to pass parameters;

CBIOSRSAPublicKey auxiliary class used by Jcbios methods to pass parameters.

Set the LD_LIBRARY_PATH environment variable to the directory containing the
libjnicbios.so library file – this way, the dynamic loader will be able to find it. If the file is in the
current directory, the following command can be used:

export LD_LIBRARY_PATH=’.’:$LD_LIBRARY_PATH

10.15. Supported Environments: macOS
The “Smarx OS for Mac” package is available at www.marx.com/downloads (MyMARX login
and valid Support Level Option required) or in the Protection Kit (PPK) and includes support
for macOS (OS X) version 10.4 and up

CBIOS for macOS requires no special kernel driver. It uses a standard USB driver included
into macOS.

10.15.1. macOS CBIOS Framework

An XCode framework sample is provided in /api/samples folder.

The framework sample requires CBIOS framework module to be installed first. Use the
unified binary module for Apple M and Intel 64 bit processors in /api/sdk/framework folder
of the “Smarx OS 4 Mac” package and install it into /Library/Frameworks/ directory.

10.15.2. macOS CBIOS Static Library

The CBIOS static library is designed for developers who prefer to use static linkage for
security reasons. Sample code is provided in /api/samples folder.

The static library for Apple M and Intel 64bit processors can be found in /api/sdk/static
folder. Static sample requires IOKit and CoreFoundation frameworks, which are standard
for macOS.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

http://www.marx.com/downloads

10. Smarx®OS API for Developers 78

10.15.3. Java (Sun JDK 1.6 and Higher)

The Java CBIOS component is implemented as a Java wrapper over the static libCBIOS.a
library (see 10.15.2). It consists of:

• Dynamically linked module (libjnicbios.jnilib)
• Collection of Java classes implementing an interface to access native methods of CBIOS.

The Java classes are released as a com.marx.jcbios package. This package is a wrapper using
the Java Native Interface (JNI) to call native methods. Since the native programming interface
for Java is part of the JDK, developing Java applets is possible using only pure Java.

By writing programs in Java using JCBIOS you can make sure that your code is completely
portable between the Windows, Linux and macOS platforms.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

10. Smarx®OS API for Developers 79

The Jcbios package consists of the following classes:

Jcbios.class wrapper class containing native method calls;

Constants.class class containing constants, error codes;

ErrorHandler class used for error handling;

CBIOSAppInfo auxiliary class used by Jcbios methods to pass parameters;

CBIOSBoxInfo auxiliary class used by Jcbios methods to pass parameters;

CBIOSInteger auxiliary classused by Jcbios methods to pass parameters;

CBIOSRSAPrivateKey auxiliary classused by Jcbios methods to pass parameters;

CBIOSRSAPublicKey auxiliary class used by Jcbios methods to pass parameters.

Set the LD_LIBRARY_PATH environment variable to the directory containing the
libjnicbios.so library file – this way, the dynamic loader will be able to find it. If the file is in the
current directory, the following command can be used:

export LD_LIBRARY_PATH=’.’:$LD_LIBRARY_PATH

10.15.4. Qt

Qt is an Open Source application development framework which creates cross-platform
applications under C++ (see http://qt.io for more details). Access to the
CRYPTO-BOX is provided via the static library libCBIOS.a which is based on the GCC library
for Xcode (see 10.15.2) and contains the same set of functions as described in CBIOS API
part (see chapter 11). All functions have the same names as their C counterparts.

Sample code is available in the /api/samples folder of the Smarx OS for Mac package (see
10.15)

10.16. Supported Environments: iOS
The Smarx OS package for iOS contains the CBIOS Network Client for iOS. The sample code
written in Xcode demonstrates interaction with a remote CBIOS Server over the network from
iOS devices.

Please contact us If you need iOS support.

10.17. Supported Environments: Android
The Smarx OS package for Android contains libraries and a sample application demonstrating
how to access the CRYPTO-BOX under Android in network or local mode. In network mode, it
allows to query a CRYPTO-BOX which is connected to a remote CBIOS Server. For local
access, a customized implementation of the USB stack based on libusb library is used.
Android SDK and Eclipse IDE are required.

Samples for both network and local mode are available on request. Please contact us for
libraries and source code.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

11. Smarx®API – High Level API for Developers 80

11. Smarx®API – High Level API for Developers

11.1. Overview – What is Smarx®API?
Smarx API is a high level API for software developers looking for manual integration of
customer specific protection and licensing logic into their products:

• Without spending time on deep understanding of hardware specific CBIOS, DO and RFP
APIs (see chapter 10.1 for an overview of all available APIs).

• Without increasing risks of adding new bugs to the product caused by potential technical
issues related to incorrect usage of the above mentioned APIs

• Offering a better work-flow for integration into programming environments, like LabVIEW,
VBA, etc.

Smarx API introduces a higher abstract layer allowing developer with one call to:

• Validate the whole license and/or this or that atomic licensing data object including both
local and network scenarios (see chapter 10.11 for details)

• Add event notifications and customer specific processing related to MARX hardware events
to the program (see 10.5)

• Remote Update (RUMS) – generate request for updates license update / execute activation
code

Smarx API exposes simple and user friendly programming interface to developers,
significantly reducing (almost excluding) chances of bugs and logical errors caused by adding
protection and licensing logic to the program. At the same time, it provides developer with
more flexibility on protection and licensing logic comparing to AutoCrypt or AutoCrypt API
based approach.

Starting with PPK 8.0, the Smarx Application Framework (SxAF) fully supports Smarx API for
API based projects by generating necessary XML based files – parameters for Smarx API
calls.

Currently the PPK includes Smarx API support for:

• MS C++ as static library (VS 2013+, SmarxCPP.lib)

• .NET (4.0+, CBIOS4NET.dll)

11.2. Smarx®API License File and License ID
License File is a key notion of Smarx API. It contains encrypted licensing data for its one call
validation. Besides information on where and how to search for customer specific CRYPTO-
BOX hardware the License File also includes description of atomic licenses included to the
product license and their License IDs. This allows the application to access and examine
values of individual atomic licenses if required.

Starting with version 8 the SxAF can generate Smarx API License File together with License
Map File – list of License IDs to be used by developers to refer to this or that atomic license in

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

11. Smarx®API – High Level API for Developers 81

Smarx API calls if needed.

Definitions:
License ID - string license identifier, to be optionally used as a parameter of Smarx API
calls, allowing to access the atomic licenses - Data Objects (DO from the DO Map).
License File – encrypted XML file to be used as a parameter for Smarx API calls. It contains
complete information on product license.

Steps for generating Smarx API license file from SxAF API based project (see chapter 4.5 for
details on creating API projects with SxAF):

1. Select “Project” menu, then “Create Smarx API license” option

2. In the “Create Smarx API license” dialog choose required partition(s)

3. Press "Export" button and specify Smarx API license file name

4. Smarx API license file and Smarx API license map file will be generated

11.3. SmarxLicense class and its common methods
The SmarxLicense class represents Smarx API with the following methods:

• void LoadFile(string licensePath) - load the license file

• void LoadString(string license) - Load the license content from string

• void Validate() - Validate the license (all atomic licenses)

• void Validate(string licenseID) - Validate atomic license with specified license ID

• object GetValue(string licenseID) - Get value of atomic license with specified license ID

If the method causes an error, then the SmarxException exception will be thrown

The CryptoboxEvent event allows to subscribe to CRYPTO-BOX attach/detach events.

11.3.1. C# Implementation

Typical scenario:
SmarxLicense smarxLicense; // creates SmarxLicense class
try
{

smarxLicense.LoadFile('C:\Users\All Users\Documents\mylicense.xml');
// load mylicense.xml license

smarxLicense.Validate(); // Validate mylicense.xml license

license1 = smarxLicense.GetValue("License01"); // Get license “License01”

// Subscribe to CRYPTO-BOX attach/detach events
smarxLicense.Notify += (CBIOSNotifyEventArgs e) =>

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

11. Smarx®API – High Level API for Developers 82

{
LicenseValidate();// Validate license file again in case of CRYPTO-BOX

// attach/detach events, please see our SDK samples
}

}
catch(SmarxException e)
{

//....
}

11.3.2. C++ Implementation

Please see description of Protection::ISmarxLicense class methods in the Smarx.hpp (see
[Smarx OS PPK root]/SmarxOS-SDK/MSVC/Include).

A typical scenario:
auto smarxLicense = SmarxRuntime::Smarx::CreateSmarxLicense();

// creates ISmarxLicense class
try
{

smarxLicense->LoadFile(“C:\\Users\\All Users\\Documents\\mylicense.xml”);
// load mylicense.xml license

smarxLicense->Validate(); // Validate mylicense.xml license

auto license1 = smarxLicense->GetValue("License01");
// Get license “License01”

// Subscribe to CRYPTO-BOX attach/detach events
*smarxLicense += [&](const SmarxRuntime::CBIOS::CryptoboxEventInfo& e)
{

LicenseValidate();
// Validate license file again in case of CRYPTO-BOX
// attach/detach events, please see our SDK samples

}

}
catch (const SmarxRuntime::LicenseException& e)
{
// …
// auto exceptions = e.GetPriorityExceptions(); // The prioritized exceptions
}
catch(const SmarxRuntime::SmarxException& e)
{
// …
}

11.4. Smarx®API: Quick Evaluation Scenario
 1. Make sure that you have Smarx OS PPK Version 8.1 or higher

 2. Launch the SxAF and create a new API based project or use one of the existing API
projects (see chapter 4.5 for details on creating API projects with SxAF)

 3. Create some partition, add a couple of Crypto Data Objects and assign some valid values
to them

 4. Generate license file: Go to Project Create Smarx API license→

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

11. Smarx®API – High Level API for Developers 83

 5. Export newly created partition to the list of export and press "Export" button

 6. Two XML files will be exported: The license itself and a map file containing License IDs of
the Crypto Data Objects

 7. Format a CRYPTO-BOX for this project (see chapter 4.9 for details)

 8. Launch the sample ([Smarx OS PPK root]/SmarxOS-Samples/SmarxAPI/):

 a) C# (C#/.../bin/Release/SmarxAcSample.exe), and select newly generated license
file by pressing the "Validate" button

 b) C++ (C++/.../Release/SmarxCppACSample.exe <license file path>), run it using
Command Prompt

 9. Make sure that it works

 10.Now do more testing by modifying the project (network-based scenario, other data
objects, changing values, etc.). Don’t forget to generate the license file and program the
CRYPTO-BOX every time before testing

 11.Have a look at the source code of the sample to see how simple license validation is with
Smarx APIs.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

12. Smarx®OS CBIOS API 84

12. Smarx®OS CBIOS API

12.1. Overview
This chapter describes the basics of the CRYPTO-BOX API for developers: CBIOS API. It
provides functions for CRYPTO-BOX identification and access to the internal memory and
encryption functions of a connected CRYPTO-BOX. To realize an effective protection scheme
with the CRYPTO-BOX, CBIOS is always required while all other Smarx OS APIs provide
extended functionality on top of it (see chapter 10.1 for an overview of all available APIs).

Both the CRYPTO-BOX XS and Versa models (CBU XS/Versa) and the CRYPTO-BOX SC (CBU
SC) are supported by CBIOS API. The CBU SC is 100% compatible with the CBU XS/Versa, so
applications written for those models work with the CBU SC (for applications using a very old
CBIOS library a recompilation with the recent CBIOS version may be required – CBU SC is
supported starting with CBIOS version 1.5). CBIOS commands specific to the CRYPTO-BOX
SC only have "CBU2" as a Prefix. These functions provide hardware-based AES/Rijndael
encryption/decryption in CBC mode, hardware-based RSA encryption/decryption, and key
management (see chapter 10.10 for more details).

For a detailed description of all CBIOS API calls, check out www.marx.com Support → →
Documents White Papers which provides Developer's Guides with API references for →
different development environments: C/C++/Delphi/VB and C# (Smarx4NET/CBIOS4NET).
For Python developers, API reference is available at [Smarx PPK root]/SmarxOS-SDK/
Python

12.2. CBIOS API Main Calls (cbios.h)

12.2.1. Smarx OS System Brackets

To start CBIOS Engine the CBIOS_Startup() function is used. It initializes the CBIOS API for
this application. Calling this function is not necessary, though, as it will be launched
automatically by the first CBIOS_ScanBoxes() call.

So, the first function usually to be called by the application is CBIOS_ScanBoxes(). This
function returns the number of attached CRYPTO-BOX units.

Although it suffices to call this function once (for one application), it should be called after
each change to the hardware configuration (i.e. after removing or attaching a CRYPTO-BOX).

The last CBIOS function to be called by the application is CBIOS_Finish(). This function tells
Smarx OS that the application does not need CBIOS API anymore and that all internal system
objects and buffers can be released. Failing to call this function may result in memory leaks.

So, every application should start its Smarx OS communication with CBIOS_ScanBoxes().
And CBIOS_Finish() is considered to be the final “Good bye, Smarx OS!”

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

12. Smarx®OS CBIOS API 85

CBIOS_Startup() and CBIOS_Finish() can be called more than once in a program. However, it
is necessary to have the number of CBIOS_Startup() calls - explicit or implicit, through
CBIOS_ScanBoxes() - equal the number of CBIOS_Finish() calls. Only the first
CBIOS_Startup() initializes a CBIOS instance and allocates the resources required, and only
the last CBIOS_Finish() releases the CBIOS resources. This logic allows developers to use
nested CBIOS_Startup/CBIOS_Finish brackets, which can be helpful for external libraries
using CBIOS.

12.2.2. Using CBIOS from within DLL

If you need to use CBIOS from within a DLL it is strongly recommended to create two special
functions in your DLL, like: Begin_CBIOS_Support() and End_CBIOS_Support() calling
CBIOS_Startup() and CBIOS_Finish() correspondingly. The first one must be called before
any other CBIOS related DLL function call, while the second must be the last one.

If for some reason it is not acceptable, then the following "special" DLL implementation of
CBIOS system brackets must be used:
//***********************************
BOOL APIENTRY DllMain (

HANDLE hModule
, DWORD ul_reason_for_call
, LPVOID lpReserved)

{
switch (ul_reason_for_call) {

case DLL_PROCESS_ATTACH:
// Important!!! Pass hModule into CBIOS_StartupDLLEx.
// If none then this call will be equivalent to CBIOS_Startup ().
// i.e. memory leaks.

CBIOS_StartupDLLEx (hModule);
break;

case DLL_PROCESS_DETACH:
CBIOS_FinishDLL();
break;

}
return TRUE;

}
//**********************************

Frankly speaking it is not a good idea to do it from within DLLMain, because thread and
window creation is not supported at that point. That’s why special non-standard functions are
provided, bypassing standard Windows limitations – CBIOS_StartupDLLEx() /
CBIOS_FinishDLL() used in the above sample of DLLMain entry point.

12.3. CRYPTO-BOX Plug In/Out Notifications
As mentioned in chapter 10.5, the new CBIOS (Smarx OS kernel) processes USB Plug & Play
event notifications and automatically refreshes its internal hardware configuration table. Thus
CBIOS will always have an up-to-date hardware table, providing information immediately on
CBIOS_ScanBoxes() calls, instead of doing a time-consuming configuration scan on each
request. This improvement also dramatically increases the data caching efficiency, because
CBIOS internal cache is not released on each CBIOS_ScanBoxes() call.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

12. Smarx®OS CBIOS API 86

CBIOS allows applications to be notified on CRYPTO-BOX hardware plug/unplug events by
registering their callback function. There are also special calls allowing you to retrieve
notifications as messages sent to specified windows. The application can register more than
one notification handler. This is especially useful when developing static libraries or DLLs.

Apart from the status change notification, the handler also receives more detailed
information:

• whether a CRYPTO-BOX was attached or detached;
• global notification ID;
• user specific information (defined during handler registration).

 The CBIOS_RegisterNotificationCallback() is used to register such notifications. In order to
get notifications as window messages use: CBIOS_RegisterNotificationMessage().

One application can register several notification handlers. This can be useful, if the
application contains more than one component and requires hardware change status
notifications.

12.4. Getting Information About Attached Hardware
If CBIOS_ScanBoxes() found one or more CRYPTO-BOX units attached, then it may make
sense to get additional information about them. This information is important in order to
decide which of the attached CRYPTO-BOX units will be opened.

That can be done through one of the following CBIOS calls:

CBIOS_GetBoxInfoAdvI() Returns full information on the CRYPTO-BOX.

CBIOS_GetBoxInfoI() Returns limited information on the CRYPTO-BOX (obsolete,
use CBIOS_GetBoxInfoAdvl() instead).

CBIOS_GetDeveloperIDI() Returns Developer ID of the CRYPTO-BOX (unique for every
MARX customer, all CRYPTO-BOXes of this customer).

CBIOS_GetSerialNumI() Returns CRYPTO-BOX Serialnumber.

CBIOS_GetAppInfoI() Helps to figure out whether or not this application has a
partition in this CRYPTO-BOX.

All these functions refer to CRYPTO-BOXes by Index: From 1 to <Box Quantity> value,
returned by the preceding CBIOS_ScanBoxes() call.

The CBIOS calls mentioned above provide information about any one of the attached
CRYPTO-BOXes. After one CRYPTO-BOX is open (see section 12.5) use CBIOS calls:
CBIOS_GetBoxInfoAdv(), CBIOS_GetDeveloperID(). They provide the same information
about currently open CRYPTO-BOX (Index is not submitted).

The following C sequence illustrates the typical startup of a CBIOS session:
DWORD dwRet;
INT32 iNumBoxes;
CBIOS_BOX_INFO_ADV BoxInfoAdv;
iNumBoxes = CBIOS_ScanBoxes();

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

12. Smarx®OS CBIOS API 87

if (iNumBoxes == 0) { /* MARX hardware not found */ }
else { // some MARX hardware found
// get extended info about hardware found (if required)
dwRet = CBIOS_GetBoxInfoAdvI(1, &BoxInfoAdv); // the first CRYPTO-BOX found
...
}
// open required CRYPTO-BOX
...

12.5. Opening the CRYPTO-BOX®
Smarx®OS provides more than one way to open a CRYPTO-BOX® in order to establish a
special session between the application (process-thread) and the selected CRYPTO-BOX.

CBIOS_OpenByIndex() opens a CRYPTO-BOX by using the Index value (from 1 to <Box
Quantity> value) that was returned by the preceding CBIOS_ScanBoxes call.

The Open by Index approach is recommended for obtaining information on currently attached
boxes when trying to find the one that is needed. Using this function only makes sense, if
application logic assumes only one CRYPTO-BOX to be attached at a time. However,
application logic should not rely on the returned Index number because this number may
change after hardware is added or removed. If you know the name of the CRYPTO-BOX
(dwBoxName) you want to open, use the CBIOS_OpenByName() instead.

While opening the CRYPTO-BOX, CBIOS does not perform any calls, it only saves the
information that the particular CRYPTO-BOX was opened to internal tables (global). To check
if the CRYPTO-BOX is really attached, call CBIOS_CheckBox().

To identify the established session, CBIOS uses ThreadID and ProcessID. This makes sure
that only one CRYPTO-BOX can be opened in one thread at the same time. To open another
CRYPTO-BOX you need to close the first one using CBIOS_Close().

It is important to mention here, that - when opening by Name, Label, App (Application) - the
first CRYPTO-BOX found that fills the criteria specified is addressed. Here are some typical
CRYPTO-BOX open call samples (C Syntax):

...
dwRet = CBIOS_OpenByIndex(1, 999); // will open sample partition of the 1st

// CRYPTO-BOX found
if (dwRet == 0) {

BoxInfo.dwStructSize = sizeof(BoxInfo);
dwRet = CBIOS_GetBoxInfoAdvI(1, &BoxInfo);
boxname = BoxInfo.dwBoxName;
boxDevID = BoxInfo.dwDeveloperID; // Developer ID
...

}
dwRet = CBIOS_Close();
...
dwRet = CBIOS_OpenByLabel(DEMO_LABEL, 0); // will open CRYPTO-BOX labeled

// “DEMO_LABEL”
// 0 partition (Smarx OS system) will be used
...
dwRet = CBIOS_Close();
...
dwRet = CBIOS_OpenByApp(999); // will open the 1st found CRYPTO-BOX

// containing 999 partition
...
dwRet = CBIOS_Close();

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

12. Smarx®OS CBIOS API 88

...
dwRet = CBIOS_OpenByName(boxname,0);// will open CRYPTO-BOX with

// submitted boxname
// partition#0 (Smarx OS system) will be
//used

 . . .
dwRet = CBIOS_Close();
...
// BoxInfo.dwDeveloperID can be examined for some predefined value
// to determine if this box belongs to distributor's boxes or not

12.6. Accessing CRYPTO-BOX® Partitions
All applications, including predefined applications, solutions and services (provided by
MARX), as well as customer specific ones, are associated with one or more partitions
allocated in CRYPTO-BOX memory.

Refer to chapter 10.2 for an introduction into CRYPTO-BOX partitions – it is important to
understand this concept!

See chapter 12.9.2 for information on UPW/APW login which is required before accessing or
writing to restricted RAM areas (RAM1/2) in partitions. Details on reading/writing to
partitions/RAM areas with the CBIOS API can be found chapter 12.9.4. Furthermore, the DO
(DataObjects) API provides a very flexible concept of managing data objects with licensing
information in the CRYPTO-BOX memory. See chapter 14 for further details.

12.7. Sharing CRYPTO-BOX Between Different Applications,
Lock/Unlock Logic

When accessing a CRYPTO-BOX from within more than one application/process/thread
concurrently, it is important to understand the underlying CBIOS logic.

CBIOS API supports concurrent sessions. When used properly, it can help block unwanted
access and allow parallel processing where it is required.

Let us start with basic statements:

1. Every CBIOS call addressed to a CRYPTO-BOX locks this CRYPTO-BOX for the time of its
execution. Other requests received by the CRYPTO-BOX during this period, will wait in the
queue.

2. Every queued CBIOS call is waiting for some predefined time interval (timeout) and will
return a CBIOS_ERR_LOCK_TIMEOUT error code, if it does not get access within this
interval.

3. By default the CBIOS timeout value is set to 20 seconds.

4. Read/write data calls sometimes may take longer (for CRYPTO-BOX XS with firmware <3.0
and 32/64 KB memory, CRYPTO-BOX units starting with Firmware 3.0 are much faster).
See chapter 12.9.4 for important information on reading the CRYPTO-BOX memory.

5. Some CBIOS calls may lock the CRYPTO-BOX for arbitrary intervals.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

12. Smarx®OS CBIOS API 89

Particular Calls and Situations:
CBIOS_OpenBy###() ... CBIOS_Close()
CBIOS_OpenBy###() calls define which Smarx OS partition will be used by the application.
After a successful CBIOS_OpenBy###() neither the CRYPTO-BOX, nor the opened partition is
locked by the calling application. This means that other applications may still access the box
and the partition.

CBIOS_LockLicense() ... CBIOS_ReleaseLicense()
The CBIOS_LockLicense() call allows you to get exclusive access to the open partition,
locking it for any other application. After this call no other application can open the partition
using CBIOS_OpenBy###(), any attempts to open it will receive a
CBIOS_ERR_NO_FREE_LICENCE error code. The exclusive access mode will be canceled
only after the application that uses the partition exclusively issues CBIOS_ReleaseLicense() or
closes the session through CBIOS_Close().

CBIOS_LockLicense()/CBIOS_ReleaseLicense() can be used to prevent several copies of the
protected application being launched through Terminal Server (see 12.9 for more details).

CBIOS_LockLicense() locks only the currently opened partition. Other partitions on the
CRYPTO-BOX are still available for other applications/processes; the same is true of hardware
encryption functionality.

CBIOS_UPWLogin()/CBIOS_APW_Login() ... CBIOS_Logout()
When one application logs into the CRYPTO-BOX by submitting a UPW/APW password
(CBIOS_UPWLogin or CBIOS_APWLogin), the CRYPTO-BOX is locked by this application. No
other application can access this CRYPTO-BOX until CBIOS_Logout() is issued. This way all
functionality of the CRYPTO-BOX is blocked for other applications: Not only access to
partitions, but also hardware encryption, random generation, etc. Only the application that is
logged in can perform calls, including memory read/write (for open partition), encryption, etc.

In local mode (CRYPTO-BOX is attached to the local USB port of the computer) it is
important to put all API calls which require UPW/APW login into Login/Logout brackets to
make sure that the CRYPTO-BOX is not blocked by other applications or threads. For the
network mode, the network server itself takes care of adding login/logout brackets to every
CRYPTO-BOX query. See chapter 13 for more details.

CBIOS_LockBox ... CBIOS_UnlockBox
CBIOS_LockBox() allows you to get exclusive access to the CRYPTO-BOX without login
(requiring password submission). No other application can access the CRYPTO-BOX until
CBIOS_UnlockBox() is issued. Not only access to the open partition is locked: the CRYPTO-
BOX is blocked completely! This function allows you to exclude any possible influence of
other processes/threads, which can be useful for critical transactions and for multi-threaded
applications.

CBIOS_IsBoxLockedByOthers[I] allows you immediately to check if the CRYPTO-BOX is
locked or not by other thread/process.

CBIOS_LockBoxEx is similar to CBIOS_LockBox, but it allows you to control returning time of
this function in case when the CRYPTO-BOX was locked by another thread/process.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

12. Smarx®OS CBIOS API 90

12.8. Attaching/Detaching CRYPTO-BOX
It is also important to understand CBIOS logic for asynchronous CRYPTO-BOX
attachment/detachment (plug in/plug out) during communication with running applications.

When receiving a new notification from the OS that a CRYPTO-BOX was attached or
detached, CBIOS refreshes its status information on currently attached CRYPTO-BOX units
and sends notifications to all CBIOS applications which registered proper handlers. However,
at the moment of notification some applications may be working with any of the attached
CRYPTO-BOX units, while other applications may be waiting in the queue in case the required
CRYPTO-BOX is busy.

In such a situation CBIOS will wait until all current (pending) CRYPTO-BOX related operations
have completed. All new requests coming from the applications will be automatically put on
hold. Only after all current operations concerning the CRYPTO-BOX(es) have completed,
CBIOS will renew hardware-related info in its internal tables, send notifications to the
applications and resume processing for all pending requests.

Thus, in case of intensive communications between applications and CRYPTO-BOX, or if one
application locked one CRYPTO-BOX for a long period of time, preceding attach/detach
events can result in noticeable delay. In this case, notifications to those CBIOS applications,
which registered their handlers for plug-in/plug-out events, will also be delayed.

12.9. Working With the Open CRYPTO-BOX®

12.9.1. Overview

After the CRYPTO-BOX is open and the session has been established, it is possible to:

• check CRYPTO-BOX presence using CBIOS_CheckBox().
• retrieve more info on the open CRYPTO-BOX with CBIOS_GetBoxInfoAdv(),

CBIOS_GetDeveloperID().
• lock/unlock the open CRYPTO-BOX using CBIOS_LockBox(), CBIOS_UnlockBox().
• login to the open CRYPTO-BOX in User/Admin modes through CBIOS_LoginUPW(),

CBIOS_LoginAPW(), CBIOS_Logout().
• lock/unlock opened partition (protection against terminal sessions):

CBIOS_LockLicense()/CBIOS_ReleaseLicense().
• use internal RSA keys for encryption: CBIOS_EncryptInternalRSA(),

CBIOS_DecryptInternalRSA().
• set the CRYPTO-BOX Volume Label using CBIOS_SetLabel().
• communicate with the CRYPTO-BOX using a general set of API calls
• set of calls for both CRYPTO-BOX XS/Versa and CRYPTO-BOX SC:

CBIOS_GetDriverLastError() get last driver error
CBIOS_GetHWRand() retrieve hardware random bit stream
CBIOS_ReadRAM1() read data from RAM1
CBIOS_WriteRAM1() write data to RAM1
CBIOS_ReadRAM2() read data from RAM2
CBIOS_WriteRAM2() write data to RAM2
CBIOS_ReadRAM3() read data from RAM3

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

12. Smarx®OS CBIOS API 91

CBIOS_WriteRAM3() write data to RAM3
CBIOS_SetUPW() set User Password
CBIOS_SetKeySession() set Key for session hardware encryption/decryption
CBIOS_SetIVSession() set Initialization Vector for session hardware

encryption/decryption
CBIOS_SetKeyPrivate() set private Key for hardware encryption/decryption
CBIOS_SetIVPrivate() set private Initialization Vector for hardware

encryption/decryption
CBIOS_CryptFixed() encrypt/decrypt data with internal hardware algorithm

using fixed Key and fixed Initialization Vector
CBIOS_CryptPrivate() encrypt/decrypt data with internal hardware algorithm

using private Key and private Initialization Vector
CBIOS_CryptSession() encrypt/decrypt data with internal hardware algorithm

using session Key and session Initialization Vector
CBIOS_EncryptRSA() encrypt data with RSA algorithm
CBIOS_DecryptRSA() decrypt data with RSA algorithm
CBIOS_GetKeyRSA() retrieve private RSA Key stored in RAM for software

RSA encryption
CBIOS_SetKeyRSA() set private RSA Key stored in RAM for software RSA

encryption
CBIOS_GenerateKeyPairRSA() generate RSA Key pair and store into corresponding

RAM area
CBIOS_PrepareRSAKey() Assembles RSA key from modulus and exponent into

internal format

• The following API calls cover CRYPTO-BOX SC specific AES functionality (see chapter
10.10 for more details):

CBIOS_CBU2_SetKeyAES() write AES keys to special cells in CBU SC dedicated
memory (RAM4)

CBIOS_CBU2_SetKeyInfoAES() set access rights for AES keys in CBU SC
CBIOS_CBU2_GetKeyInfoAES() get information about access rights for AES keys in

CBU SC
CBIOS_CBU2_LockKeyAES() lock specified AES key in CBU SC

• The following API calls cover CRYPTO-BOX SC specific RSA functionality (see chapter
10.10 for more details):

CBIOS_GenerateKeyPairRSAEx() generate CBU SC RSA keypair in computer memory
CBIOS_CBU2_SetKeyRSA() write RSA keypairs to special cells in CBU SC

dedicated memory (RAM4)
CBIOS_CBU2_EncryptRSA() encrypt data with RSA algorithm using CBU SC

hardware-based RSA encryption/decryption
CBIOS_CBU2_DecryptRSA() decrypt data with RSA algorithm using CBU2

hardware-based RSA encryption/decryption
CBIOS_EncryptRSAEx() encrypt data with software based RSA

encryption/decryption (CBU SC compatible)
CBIOS_DecryptRSAEx() encrypt data with software based RSA

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

12. Smarx®OS CBIOS API 92

encryption/decryption (CBU SC compatible)

The next subsections discuss and illustrate the most typical and most important parts of the
CBIOS API.

12.9.2. Logging Into a CRYPTO-BOX

CRYPTO-BOX hardware supports password protection. This means that a password must be
provided to get access to protected functionality: read/write protected memory areas,
perform hardware based encryption, etc. Two levels of password protection are provided:
user password (UPW) and administrator password (APW).

CBIOS also allows applications to perform UPW or APW level login to a currently opened
CRYPTO-BOX using CBIOS_UPWLogin()/CBIOS_APWLogin(). All subsequent CBIOS calls
requiring the password can omit its value, specifying NULL instead. This logic will work until
CBIOS_Logout() is issued (see the example in section "Read/write CRYPTO-BOX memory"
below).

For security purposes it is recommended to use Admin level login (APW) only at distributor's
production facility, limiting protected application with User (level login (UPW). Thus, even if
UPW is compromised for some reason, the intruder will not be able to change RAM2 contents
and other APW protected codes.

12.9.3. Protection Against Terminal Sessions

Windows Terminal Server environments (provided by Microsoft Windows Server platforms)
permit more than one instance of a protected application to be launched on the server in
different client sessions. In some cases, this can be used for breaking license limitations:
Terminal Server environments may allow several clients to access the protected application,
which was originally licensed for one user only.

Although the problem can be solved through the CBIOS network license management model
or by locking a required partition indirectly, it makes sense to provide a direct solution in the
CBIOS API. For this purpose, CBIOS local mode implementation contains special calls similar
to those included in the network mode:

CBIOS_LockLicense()/CBIOS_ReleaseLicense(). CBIOS_LockLicense() can be called after
opening the required partition with one of the CBIOS_OpenBy functions.
CBIOS_LockLicense() blocks other processes (applications) or threads running on the
Terminal Server from opening this partition until CBIOS_ReleaseLicense() is received.

12.9.4. Read/Write CRYPTO-BOX Memory

The CBIOS API includes read/write partition memory operations for all memory areas:
RAM1/RAM2/RAM3.

Please refer to chapter 10.2 for more detailed information on Smarx OS partitions and RAM
areas – it is important to understand this concept!

The following C code fragment demonstrates CBIOS read/write calls (assumes that
CRYPTO-BOX is already open – see corresponding code in chapter 12.5):

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

12. Smarx®OS CBIOS API 93

// in assumption that some CRYPTO-BOX partition is already open:
dwRet = CBIOS_UPWLogin(bUPW); // UPW Login to the open partition
if (dwRet == 0) {

...
dwRet = CBIOS_WriteRAM1(0, sizeof(szDemo1), &szDemo1, NULL);
// last parameter (UPW) may not be submitted (NULL) because of UPW Login
dwRet = CBIOS_ReadRAM1 (0, sizeof(szDemo2), &szDemo2, NULL);
...
dwRet = CBIOS_WriteRAM2(0, sizeof(szDemo1), &szDemo1, bAPW);
// last parameter (APW) must be provided to write to RAM2, not logged with APW
dwRet = CBIOS_ReadRAM2(0, sizeof(szDemo2), &szDemo2, NULL);
// last parameter (UPW) may not be submitted (NULL) because of UPW Login

}
CBIOS_Logout(); // end of UPW Login
…

For older CRYPTO-BOX XS units with firmware <3.0 and 32/64 KB memory only, read/write
data calls sometimes may take longer (some seconds). The CRYPTO-BOX SC and CRYPTO-
BOX XS units starting with Firmware 3.0 are much faster. However, your application should
only read the data from the CRYPTO-BOX which are actually needed instead of reading one
big data block. Use CB Format/SmrxProg to create multiple memory objects. Working with
DataObjects Map files can help here (see chapter 14.5 and 4.5.6 for more details).

12.9.5. Using Symmetric Encryption

For an introduction into AES encryption with the CRYPTO-BOX, see chapter 10.8.

The following C code fragment demonstrates CBIOS AES (Rijndael) encryption:
char bTest1[] = “DEMO STRING DEMO STRING DEMO STRING”;
char bTest2[] = “ “;
strcpy(bTest2,bTest1);
dwLen = sizeof(bTest2);
dwRet = CBIOS_CryptSession(dwLen,bTest2); //encrypt data with
Rijndael Session Key
dwLen = sizeof(bTest2);
dwRet = CBIOS_CryptSession(dwLen,bTest2); // decrypt data
...
dwRet = CBIOS_SetKeyPrivate(bAPW,bNewKEY); // change Private Key value
dwRet = CBIOS_SetIVPrivate(bAPW,bNewIV); // change its IV
dwRet = CBIOS_UPWLogin(bUPW); // Private Key requires UPW or APW login
dwRet = CBIOS_CryptPrivate(dwLen,bTest2); // encrypt data with
Rijndael Private Key
...

12.9.6. Asymmetric RSA Encryption

For an introduction into RSA encryption with the CRYPTO-BOX, see chapter 10.9.

For details on RSA implementation and corresponding API calls, click the "Browse
Documentation" button in the PPK Control Center which provides Developer's Guides with
API references for different development environments: C/C++/Delphi/VB and C#
(Smarx4NET/CBIOS4NET).

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

12. Smarx®OS CBIOS API 94

Apart from pre-created RSA key pairs, MARX customers (developers) can also create their
own key pairs using CBIOS_GenerateKeyPairRSA(). They may store them in the CRYPTO-BOX
memory (associated partitions with required protection levels) and use them for encryption
through the CBIOS_EncryptRSA(), CBIOS_DecryptRSA() functions.

Please, refer to the cbios_sample.c sample code provided (look for RSA() function) to figure
out how to create RSA key pairs and how to use them as well as predefined values for
encryption.

12.9.7. MD5 Hash Encryption

CBIOS_MD5Hash() – this extra function calculates MD5 hashes from any input sequence of
data. The MD5 hash algorithm is software-implemented, so it may be called without an
CRYPTO-BOX attached.

12.10. CBIOS API Description
For a detailed description of all CBIOS API calls, check out www.marx.com Support → →
Documents White Papers which provides Developer's Guides with API references for →
different development environments: C/C++/Delphi/VB and C# (Smarx4NET/CBIOS4NET).

13. Smarx®OS Networking: CBIOS on the Network

13.1. General Issues
Smarx®OS Networking allows Smarx OS based applications to access a CRYPTO-BOX unit
attached to one computer within a network.

A special program, called Smarx OS Network Server (or CBIOS Network Server), monitors
remote connections to all local CRYPTO-BOX units on this computer.

Please refer to our White Paper “Network Licensing” for:

• An introduction to network licensing with the CRYPTO-BOX
• CBIOS Network Server Administration
• Typical network session scenario
• How to start with network implementation via API

13.2. Network CBIOS API Calls
For a detailed description of all CBIOS API calls, check out check out www.marx.com →
Support Documents White Papers which → → provides Developer's Guides with API
references for different development environments: C/C++/Delphi/VB and C#
(Smarx4NET/CBIOS4NET).

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

https://www.marx.com/en/support/documents#whitepapers
https://www.marx.com/en/support/documents#whitepapers

14. Smarx®OS DataObjects API 95

14. Smarx®OS DataObjects API

14.1. Concept: What is Smarx®OS DO API? Why DataObjects?
Smarx OS DataObjects API is based on top of the low-level CBIOS API (described above) and
is targeted at the software, data copy protection and licensing market.

Smarx OS DataObjects API provides convenient access to various objects, like an expiration
date, usage counter, password, self-defined objects, etc., stored in the CRYPTO-BOX memory
partitions.

Please refer to chapter 10.2 for more detailed information on Smarx OS partition handling -
it is important to understand this concept!

The Smarx OS DO API is one of the foundations for Smarx OS-based automatic protection
(AutoCrypt). For API implementation, MARX provides tools for configuring the CRYPTO-BOX
with pre-defined DataObject settings which can be queried via API later. Partitions (and their
content) can be added to the CRYPTO-BOX creating an “Implementation with API” project in
the Smarx OS Application Framework (see chapter 4.5) or using the SmrxProg command line
tool (see chapter 4.8).

Because Smarx OS DO API calls and Data Objects are implemented on top of the CBIOS
API, they are named with the special prefix “TEOS”, like: TEOSDO_EXPIRATION_DATE or
TEOS_DoCreateReference(…);

14.2. Smarx®OS DataObject Types
For convenience, generic data object types occupy 4 (or more) bytes of memory in one of the
application's partitions. The premise of Smarx OS is that every application operates
exclusively with memory inside its own partition(s) to prevent data loss.

CDO (Crypto Data Objects) – a recently introduced new generation of Data Objects –
preventing intruders from changing licensing data and/or from emulating the CRYPTO-BOX
functionality even if the UPW value was exposed (e.g. by analyzing/disassembling the code of
protected applications).

Crypto Data Objects are encrypted with the System AES key. CDO adds reliable protection
against memory transparency: it is impossible to read/write CDO value from the CRYPTO-BOX
memory directly. Moreover, data which were read from one CRYPTO-BOX will become invalid
if being written to another CRYPTO-BOX.

You can see auxiliary functions for CDO (distr_cdo_create_signed_data, etc) in DO sample
code: [Smarx OS PPK root]/SmarxOS/API/{Platform}/Samples/DO/.

Each data object has the following “physical” properties:
• offset (address) in partition memory
• memory area (RAM1 / RAM2 / RAM3)
• size

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

14. Smarx®OS DataObjects API 96

• value.

Supported DataObject Types:
API Constant Memory Storage Methods

TEOSDO_CDO_EXPIRATION_DATE_AND_TIME
TEOSDO_EXPIRATION_DATE_AND_TIME
(Fixed Value)
Fixed expiration date and time, submitted in the
following format:
1) as a string including date only:“19 DEC 2014”
2) as a string including date and time (24 hour
 format): “19 DEC 2014 23:59:59”
3) as a string including date and time stamp (as date
only):
 “19 DEC 2014, 20 DEC 2012”
4) as a string including date and time (24 hour
 format) and time stamp (as date only):
 “19 DEC 2014 23:59:59, 20 DEC 2012”
5) as a SYSTEMTIME structure
6) as a SYSTEMTIME structure with time stamp
specified as a second SYSTEMTIME structure.

Current time stamp is written to the CB memory
during verification to prevent time tampering by
clock time reset. Alternatively time stamp can be
specified along with expiration date (see options
3,4, and 6 above).
Increment/Decrement methods add/subtract
number of days to/from the expiration date & time
value (the same way as it is done for expiration date).

8 (+12 for CDO) bytes
in the application
partition memory

SET,
GET,
INC,
DEC,
VERIFY,
UNLIMITED

TEOSDO_EXPIRATION_DATE (Fixed Value)
Fixed expiration date, submitted in the following
format: “19 DEC 2014”. This data object type is
obsolete and only preserved for compatibility
purposes; it is recommended to use “Expiration Date
& Time” instead (see above).
Current time stamp is written to the memory during
verification to prevent time tampering by clock time
reset. Alternatively, time stamp can be specified
along with expiration date in the following format:
“20 DEC 2020, 20 DEC 2012”.

4 bytes in the
application partition
memory

SET,
GET,
INC,
DEC,
VERIFY,
UNLIMITED

Expiration Date Relative
(TEOSDO_NUMBER_OF_DAYS with dwParameter
= TEOSDO_NUMBER_OF_DAYS_
AS_EXPIRATION_DATE 0x02)
“Floating” expiration date – submitted as the
number of days the application may be used from
the first launch (after first VERIFY operation).
Current timestamp is written in the memory during
verification to prevent clock time reset.

4 (+12 for CDO) bytes
in the application
partition memory

GET,
INC,
DEC,
VERIFY,
CLEAR,
UNLIMITED

TEOSDO_CDO_NUMBER_OF_DAYS
TEOSDO_NUMBER_OF_DAYS
Flexible expiration date, submitted as the number of

4 (+12 for CDO) bytes
in the application
partition.

SET,
GET,
INC,

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

14. Smarx®OS DataObjects API 97

days the application may be used. Only the days the
application is actually used will count.
Current time stamp is written to the CB memory
when days counter is decremented to prevent clock
time reset (time tampering).

DEC,
VERIFY,
CLEAR,
UNLIMITED

TEOSDO_CDO_TIME_ALLOWED
TEOSDO_TIME_ALLOWED
Real-time expiration, submitted as a period of time
(in seconds) that application usage is permitted.
The counter of seconds is decremented periodically
during application execution.

4 (+12 for CDO) bytes
in the application
partition.

SET,
GET,
INC, DEC,
VERIFY,
CLEAR
UNLIMITED

TEOSDO_CDO_COUNTER
TEOSDO_COUNTER
Number of allowed application executions (runs).
Run counter is decremented each time the
application is launched.
NOTE: automatic decrement is performed only for
AutoCrypt based protection. For protection using
API, run counter must be decremented each time
the application is launched (using DEC method).

4 (+12 for CDO) bytes
in the application
partition.

SET,
GET,
INC,
DEC,
CLEAR,
UNLIMITED

TEOSDO_CDO_MEMORY
TEOSDO_MEMORY
Customer-specific array of licensing data in CB
memory supporting application specific licensing
logic.

N (+12 for CDO) bytes
in the application
partition.

SET,
GET

TEOSDO_DOUBLE_WORD
Customer-specific data DWORD value – can be used
for any application specific licensing data (should be
considered as a subtype of TEOSDO_MEMORY).

4 bytes in the
application partition.

SET,
GET

TEOSDO_CDO_PSW_HASH
TEOSDO_PSW_HASH
Hash value, calculated from password string.

4 (+12 for CDO) bytes
in the application
partition.

SET,
VERIFY

TEOSDO_CDO_APP_CS
TEOSDO_APP_CS
CRC value, calculated from the application file.

4 (+12 for CDO) bytes
in the application
partition.

SET,
VERIFY

TEOSDO_CDO_APP_NAME_HASH
TEOSDO_APP_NAME_HASH
Hash value, calculated from the application name.

4 (+12 for CDO) bytes
in the application
partition.

SET,
VERIFY

TEOSDO_NET_License
Application Network License value. Needs Admin
Password (APW) to be set/changed.

4 bytes in LCS
partition

SET,
GET,
INC,
CLEAR,
UNLIMITED

TEOSDO_NET_License_Ex
Application Network License value along with
License Sharing Rules. Needs Admin Password
(APW) to be set/changed.
Data format (for SET and GET methods):
DO_NET_LICENCE_EX_DATA{
BYTE bNetLic;
BYTE bRuleId;
WORD wReserved;}
where

4 bytes in LCS
partition

SET,
GET,
INC,
CLEAR,
UNLIMITED

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

14. Smarx®OS DataObjects API 98

bNetLic - Network License value;
bRuleId - License Sharing Rule Id.
TEOSDO_RSA
RSA encryption key implemented as Data Object.
Provides DO API based access to CBU SC RSA keys.
SET method takes pointer to CBIOS_RSA_KEY
structure (as pData parameter).
TEOSDO_RSA specific methods are:
TEOS_DoSetKey, TEOS_DoClearKey,
TEOS_DoGenerateEx, TEOS_DoEncryptRSA,
TEOS_DoDecryptRSA*.

RSA key in dedicated
RAM4 memory zone
of CBU SC

SET,
CLEAR

TEOSDO_RSA_DISTRIBUTOR,
TEOSDO_RSA_CLIENT
Internal RSA encryption keys (SmarxOS system
objects) implemented as Data Object. Provides DO
API based access to Client/Distributor RSA keys.
Specific methods are: TEOS_DoEncryptRSA,
TEOS_DoDecryptRSA*.

RSA keys in
dedicated RAM4
memory zone for CBU
SC or reserved
memory in case of
CBU XS/Versa

TEOSDO_RSA_EX
Descriptor for RSA encryption key implemented as
Data Object. Allows programming of key type (CBU
SC RSA or Internal RSA) as well as RSA algorithm
specific data (like padding).
Data format (for SET method): DO_RSA_EX_DATA
structure or DO_RSA_EX_DATA + CBIOS_RSA_KEY.
 DO_RSA_EX_DATA{
DWORD dwKeyIndex;
DWORD dwKeyMode;
DWORD dwUpdateDescr;
DWORD dwReserved;}
where
dwKeyIndex – CBU SC RSA key index, or -2 for
Distributor public, or -3 for Client private;
dwKeyMode – CBIOS_RSA_MARX_PADDING
(0x00) or CBIOS_RSA_RSAREF_PADDING (0x10).
TEOSDO_RSA_EX specific methods are:
TEOS_DoSetKey, TEOS_DoClearKey,
TEOS_DoGenerateEx, TEOS_DoEncryptPublic,
TEOS_DoEncryptPrivate, TEOS_DoDecryptPublic,
TEOS_DoDecryptPrivate
(TEOS_DoEncryptRSA, TEOS_DoDecryptRSA are
also supported)*.

4 bytes in the
application partition.

SET, CLEAR

TEOSDO_AES
AES encryption key implemented as Data Object.
Provides direct DO API based access to CBU SC AES
keys.
SET method takes pointer to CBIOS_AES_KEY
structure (as pData parameter).
TEOSDO_AES specific methods are:
TEOS_DoSetKey, TEOS_DoClearKey,
TEOS_DoCryptAES*.

AES key in dedicated
RAM5 memory zone
of CBU SC

SET, CLEAR

TEOSDO_AES_FIXED (read-only),
TEOSDO_AES_PRIVATE,

AES keys in the RAM5
memory zone (CBU

SET, CLEAR

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

14. Smarx®OS DataObjects API 99

TEOSDO_AES_SESSION
Internal AES encryption keys (SmarxOS system
objects) implemented as Data Object type; provides
direct DO API based access to system AES keys .
SET method takes BYTE [0x20] - AES key & IV (as
pData parameter).
TEOSDO_AES specific methods are:
TEOS_DoSetKey, TEOS_DoClearKey,
TEOS_DoCryptAES*.

SC) or reserved
memory (CBU
XS/Versa)

TEOSDO_AES_EX
Descriptor for AES encryption key implemented as
Data Object. Allows programming of key type (CBU
SC AES or Internal AES) as well as AES algorithm
specific data.
Data format (for SET method): DO_AES_EX_DATA
structure or DO_AES_EX_DATA + AES key
(CBIOS_AES_KEY or BYTE [0x20] accordingly).
 DO_AES_EX_DATA{
DWORD dwKeyIndex;
DWORD dwKeyMode;
DWORD dwUpdateDescr;
DWORD dwReserved;}
where
dwKeyIndex – CBU SC AES key index, or -2 for
Fixed, or -3 for Private, or -4 for Session;
dwKeyMode – OFB (1) or CBC (2).
TEOSDO_AES_EX specific methods are:
TEOS_DoSetKey, TEOS_DoClearKey,
TEOS_DoEncryptAES, TEOS_DoDecryptAES
(TEOS_DoCryptAES is also supported)*.

4 bytes in the
application partition.

SET, CLEAR

TEOSDO_SIGNATURE
Combination of two RSA encryption key descriptors
(“A” and “B”) used for signing routine implemented
as Data Object.
Data format (for SET method):
DO_SIGNATURE_DATA structure or
DO_SIGNATURE_DATA + CBIOS_RSA_KEY or
DO_SIGNATURE_DATA + 2x CBIOS_RSA_KEY.
 DO_SIGNATURE_DATA{
DO_RSA_EX_DATA keyA;
DO_RSA_EX_DATA keyB;
DWORD dwHashType;
DWORD dwTimeStampSize;}
where
keyA, keyB - RSA encryption key descriptors (keyB is
optional and can be absent – for single key signing;
in this case dwKeyIndex for keyB must be -1);
dwHashType – hash algorithm type (0 stands for
“MD5”);
dwTimeStampSize – size of time stamp, used for
additional signature validation (0 stands for none,
default - 4).
TEOSDO_SIGNATURE specific methods are:

4 bytes in the
application partition.

SET, CLEAR

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

14. Smarx®OS DataObjects API 100

TEOS_DoSetKeys, TEOS_DoGenerateA,
TEOS_DoGenerateB,
TEOS_DoCalculateDigitalSignature(F),
TEOS_DoValidateDigitalSignature(F)*.
TEOSDO_CDO_BINDING
TEOSDO_BINDING
“Locking” the software to the computer on which it
is running or to the network server on which the
CRYPTO-BOX is attached.
All hardware parameters are validated and the total
vote count (sum of changes multiplied by weight –
see table below) is calculated to compare it with a
threshold value (default value is used for now, will be
specified by developers in future). If the total vote
count is greater than or equal to the threshold value
then the validation is considered as failed (the
local/network hardware was changed, thus violating
the license).
TEOSDO_BIND_GENERATE_ACTIVATION_REQUES
T – generates activation request
TEOSDO_BIND_ACTIVATE – activates bound
system with obtained distributor's signature
TEOSDO_LOCAL_IN_NET_MODE – see “Network
binding support” paragraph below
**The table with hardware parameters and
additional information is provided below.
Note for CDO_BINDING: TEOS_DoClear doesn't
clear the bound status, use TEOS_DoSet to reset
the DO status.

115 (+12 for CDO)
bytes in the
application partition

SET,
GET,
BIND
(=INC),
VERIFY,
CLEAR

TEOSDO_CDO_GEOLICENSE
TEOSDO_GEOLICENSE
“Locking” the software to some location and/or civic
address or its part (City/ZIP code/Post code/Country)
of end-user's computer on which the protected
software is running. The CRYPTO-BOX has to be
attached to this computer or available on the
network through CBIOS Network Server.
This DO is currently based on Microsoft Location API
for Windows (supported for Win8). It is possible to
define all or only some geo parameters for their
further validation (see DO_GEO_DATA in
TEOSDO.h). In particular the software can be bound
to some Geo-location + error radius and/or complete
or partial civic address specifying Country,
State/province, ZIP/Postal code, Street address. The
exact value of each Geo-parameter included to the
license can be set by distributor as static part of the
license (say, this product can be used in “GA, USA”
only) or the value can be obtained on end-user's side
on the first program run using
TEOSDO_GEO_BIND_*. It will bind protected
application to location of its first run (in terms of the
above example it means: this product can be used

120 (+12 for CDO)
bytes in the
application partition

SET,
GET,
BIND
(=INC),
VERIFY,
CLEAR

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

14. Smarx®OS DataObjects API 101

only in <State, Country> of its first run).
NOTE: There is no need to call BIND if values of
required geo-parameters are set by distributor. The
TEOSDO_GEO_DOUBLE_UNINIT flag for
errorRadius and for altitudeError ignores GPS
position.
A Civic Address provider is currently not supported
with Windows 8.
TEOSDO_GEO_LOCATION – get current location
For network based scenario
TEOSDO_LOCAL_IN_NET_MODE – allows binding
to the client computer which issued the request.

* - these methods are not supported by TEOS_DoOperation. See section 14.6 for more
information on API functions.
** - Vote Weights Table for supported platforms:

Win, Linux(15+Id), Mac OS X(30+Id)

Id Parameter Default Vote Weights

1 Processor

10
2 MAC address

3 Motherboard

4 Hard Disk Drive

5 Video Controller

5
6 OS Product ID

7 Sound Card

8 User Name

9 BIOS
4

10 Physical memory

11 File Path

212 Computer Name

13 IP

14
Reserved 0

15

Threshold 20

iOS

46 UUID
10

47 MAC

Threshold 10

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

14. Smarx®OS DataObjects API 102

Android

48 MAC
10

49 Reserved

Threshold 10

14.2.1. Network Binding Support

Two different scenarios of network binding are supported for the "Binding to local/network
computer" DO. For the first one, protected software will be bound to the server computer
where the CRYPTO-BOX is attached, while the second scenario (flag
TEOSDO_LOCAL_IN_NET_MODE for TEOS_DoCreateReference) allows binding to the client
computer which issued the request. For the second scenario, it is important to keep in mind
that each client will require a separate DO for binding.

The object will be bound with the first TEOSD_DO_BIND call issued by one of the network
clients running on this computer.

The first scenario should be considered for network seat based licensing model, when
protected software bound to the server computer can be launched simultaneously from
several clients (seats).

The second scenario is best suited for times when the CRYPTO- BOX cannot be attached
directly to client's computer (for example, tablet/smart-phone) using network licensing as a
way to connect to the CRYPTO-BOX remotely. In some cases, this approach can be used for
several clients, but a separate Data Object has to be reserved for each client.

14.2.2. File with Hardware Binding Data

This file is created at the time of binding. The time-stamp of operation (stored in the DO) is
used as its name. The file is created in \All Users\MARX\Binding\ folder of local or server
computer. Activation file is created at the same path.

14.3. Set of Data Objects
Smarx OS DO API encapsulates a dynamic set of data objects (application license). So you
can define the application license as a collection of one or more data objects (set of data
objects). Later the application can perform different actions on this set and data objects
included to it.

A typical scenario:
TEOS_DoCreateReference(…); // creates reference for DataObject #1
TEOS_DoCreateReference(…) ; // creates reference for DataObject #2

…… // proceed data objects

TEOS_DoDeleteReference(…); // delete reference for DataObject #1
TEOS_DoDeleteReference(…); // delete reference for DataObject #2

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

14. Smarx®OS DataObjects API 103

// or

TEOS_ClearReferences(…); // clear all references

DataObject references can be loaded into memory and released - either before or after
partition is opened and login to the CRYPTO-BOX is made.

See section 14.6 for further information on Smarx OS Data Objects API calls.

14.4. Accessing DataObjects from Applications
Smarx OS DO API is based on CBIOS API, so you need to open the proper partition and login
to the CRYPTO-BOX first in order to access data objects located in CRYPTO-BOX memory.
You may define data object references before or after that.

A typical scenario (all TEOS_Do calls should be considered as optional depending on
application specific licensing logic):
CBIOS_OpenByApp(...); // open partition
CBIOS_UPWLogin(...); // login to CRYPTO-BOX

TEOS_DoSet(…); // DO value initialization
….
TEOS_DoGet(…); // Retrieving DO value
….
TEOS_DoVerify(…); // DO verification (if implemented), checks DO value validity
…
TEOS_DoInc(…); // DO value increase (if implemented)
….
TEOS_DoVerify(…);
….
TEOS_DoDec(…); // DO value decrease (if implemented)
….
TEOS_DoVerify(…);
…..
TEOS_DoClear(…); // Reverting DO value to unitialized state
…
TEOS_DoVerify(…);
….
TEOS_DoUnlimited(…);…
….
TEOS_DoVerify(…);

CBIOS_Logout(...); // CRYPTO-BOX logout
CBIOS_Close(…); // close partition

See section 14.6 for further information on Smarx OS DataObjects API calls.

14.5. Creating DataObjects Map: Import/Export
A set of Data Objects representing application license can be saved to a binary map file. This
file can be later imported by another application. It makes DO programming more flexible and
convenient; it can be also used for data exchange. Data Object information is exported and
imported as a Data Object Map (contents of binary map file). Data Object Map manipulations
are relevant for those who use API directly. Data Object Map is used, for example, in Remote
Update Activation Sequence creation.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

14. Smarx®OS DataObjects API 104

A typical scenario:
TEOS_DoCreateReference(…); // create reference for DataObject #1
TEOS_DoCreateReference(…) ; // create reference for DataObject #2

TEOS_DoSaveMap(…); // export data objects map into memory buffer
// or
TEOS_DoSaveMapFile(…); // export data objects map into file

TEOS_ClearReferences(…); // clear all references

TEOS_DoLoadMap(…); // import data objects map from memory buffer
// or
TEOS_DoLoadMapFile(…); // import data objects map from file
…… // process data objects
TEOS_ClearReferences(…); // clear all references

Data Object information can be also created in SxAF, including export of Data Object map file.
See chapter 4.5.6 for more information.

14.6. Smarx®OS Data Object API Calls
For a detailed description of Data Object API calls, check out www.marx.com Support → →
Documents White Papers where Developer's Guides with API references for different →
development environments: C/C++/Delphi/VB and C# (Smarx4NET/CBIOS4NET) are
provided.

The PPK Control Center section "Implementation with API" provides more information on
available DO API sample code (and RFP API sample code with DO API) for different
compilers. We strongly recommend that you have a look at them before you start writing your
code.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

https://www.marx.com/en/support/documents#whitepapers

15. Smarx®OS Remote Update Technology 105

15. Smarx®OS Remote Update Technology

15.1. What is Smarx®OS Remote Update API? How Can It Be Used?
Smarx OS Remote Update API provides a convenient way of remotely updating Data Objects,
stored in CRYPTO-BOX partitions. The Remote Update basic API is mainly an addendum on
top of the Smarx OS DO API (see chapter 14). Moreover it provides MARX
customers/distributors with a way to change the CRYPTO-BOX geometry remotely, for
example to create new partitions, delete or re-size existing partitions, and more.

Smarx OS DataObjects API provides convenient access to various objects, like expiration
date, usage counter, password, memory objects (customer defined), etc., stored in
CRYPTO-BOX memory partitions. Smarx OS DO API is one of the foundations for software and
document protection and is used in Smarx OS Application Framework (SxAF) components
like AutoCrypt (for automatic software protection), Implementation with API, and Document/
Media Protection.

Smarx OS Remote Update API is designed for updating any set of DataObjects, programmed
into a CRYPTO-BOX after automatic protection or implementation with the API. Using Smarx
OS Remote Update API, you may extend the expiration period of evaluation or demo versions,
change limitations, and turn features on/off and even add new partition(s) with additional
licensing options. In fact, there are no limitations on how to use Remote Update API you
utilize it for protecting application with API: you can update everything you need in any
manner you want.

Smarx OS Remote Update API can be divided into End-user side functions and Software
vendor side functions. End-user side functions are to be executed on end-user's side (where
a CRYPTO-BOX with licensing data is attached). Software vendor side functions are to be
executed on software vendor's side (where remote update operator resides).

Alternatively to implementing Smarx OS Remote Update API functions directly into your
application SxAF (Smarx Application Framework), or Remote Update command line utility
can be used (see chapter 6.1 for more details). This approach requires no programming
efforts. It uses RUpdate utility on end-user side (which can be generated using SxAF or
with RU_Tool command-line utility) while Software vendor side functions are provided by
SxAF or RU_Tool directly.

See chapter 14 for information on Data Objects API.

15.2. Brief Description of Remote Update API
Types, RFP_Free, RFP_GetVersion functions:
RFP types:

RFP_ErrorCode error code (DWORD)

RFP_TrMark Remote Update transaction mark (DWORD)

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

15. Smarx®OS Remote Update Technology 106

RFP_PASSW Remote Update password (16 bytes)

RFP_Request structure, used for specifying needed request for remote update

RFP_Request structure members:
Field Type Description

dwSize DWORD structure size

dwMask DWORD structure mask, verifies which structure members are valid for
request (Structure mask: see table below)

dwTrMark DWORD transaction mark (is generated inside RFP_CreateRequest
function)

dwUserId DWORD end user/clientID (In some cases information about end-user is
optional)

dwProjId WORD project ID

dwParam DWORD customer parameter

Project ID and User ID are used on your side to determine end user and project details;
they are required for remote updates.

Structure mask may have the following values:
RFP_REQUEST_MASK_TRANS_MARK parameter dwTrMark is valid ()

RFP_REQUEST_MASK_USER_ID parameter dwUserId is valid

RFP_REQUEST_MASK_PROJ_ID parameter is valid

RFP_REQUEST_MASK_PARAM parameter is valid

RFP_REQUEST_MASK_ALL all above parameters are valid

RFP_Free function is a common function for end-user and distributor side. It is used for
releasing the memory allocated by the Remote Update library. See detailed description RFP
API description (available in the "Browse Documentation" section of the PPK Control Center).

RFP_GetVersion function returns the number of the current RFP API version to pdwMajor
and pdwMinor OUT parameters.

End-user side functions:
RFP_CreateRequest function generates a Transaction Mark that is written into the
CRYPTO-BOX system area. The proper request is stored in memory buffer, and pointed to
using ppRequestData. The memory buffer is allocated dynamically – the RFP_Free function
must be called to release the allocated memory. The dwMaskNotEncrypted mask parameter
specifies a list of request parameters that should not be encrypted.

RFP_ClearRequest clears the Transaction Mark in the CRYPTO-BOX system area.

RFP_ProceedActCode executes the Activation Code.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

15. Smarx®OS Remote Update Technology 107

Advanced functions (working with parameters):
RFP_PrepareRequest creates a Request object and returns its pointer in phRequest out
parameter.

RFP_AddRequestParam adds a parameter to the Request object. Call this function for each
parameter you want to add.

RFP_MakeRequest repeats RFP_CreateRequest for Request object previously prepared by
RFP_PrepareRequest and RFP_AddRequestParam.

RFP_RequestFree removes Request object and releases occupied memory. It must be called
when the Request object is not needed anymore (after RFP_MakeRequest).

Software vendor side functions:
RFP_TranslateRequest translates the RFP_Request structure from a customer request. The
pbRSADistribPrivate and pbRSAUserPublic parameters may be NULL, in this case, only
those request fields not encrypted will be initialized. The proper bits will be set in pRequest-
>dwMask.

RFP_ActSeqCreate creates an Activation Sequence object and returns its pointer in the
phActSeq parameter. Activation Sequence consists of a set of records, called Activation
Sequence Records. Each record corresponds to a sequence executed for one partition in the
CRYPTO-BOX memory.

RFP_ActSeqRecCreate creates one record in activation sequence.

RFP_ActSeqRecCreateEx creates one extended record in activation sequence.

RFP_ActSeqAddRec adds a record to the Activation Sequence.

RFP_ActSeqFree removes an Activation Sequence object and releases the memory
occupied. It must be called when the Activation Sequence is not needed anymore (after
Activation Code generation).

RFP_ActSeqRecFree must be called, if the proper record was created but not added to the
Activation Sequence. If it has already been added to the Sequence, there is no need to call it
as the record will be released automatically when RFP_ActSeqAddRec is called.

RFP_ActSeqAddStep function adds one step to the update sequence.

RFP_GenerateActCode generates an Activation Code that is stored in memory buffer. Later
on, the memory buffer must be released using RFP_Free.

Advanced functionality (working with parameters):
RFP_LoadRequest loads a request from a binary array to the Request object

RFP_TranslateRequestFromHandle repeats RFP_TranslateRequest but gets a Request
object instead of a binary array. If this function is supplied with RSA keys, it decrypts the data
in the Request object. As the Request object is in “decrypted” state, RFP_GetRequestParam
calls for encrypted parameters will be successful.

RFP_GetRequestParam returns the parameters of the Request to pParamData memory
buffer.

RFP_RequestFree function removes the Request object and releases the memory occupied.
It must be called when the Request object is not needed anymore.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

15. Smarx®OS Remote Update Technology 108

15.3. How to Initiate Remote Update Request on the End-user Side?
Smarx OS Remote Update API is based on the CBIOS API. Therefore, initiating remote
updates on the end-user side requires that the proper CRYPTO-BOX be found first.

A typical scenario:
CBIOS_ScanBoxes(); // scans for CRYPTO-BOX
CBIOS_GetBoxInfoI(…); // obtains CRYPTO-BOX info

RFP_ClearRequest (…); // clears previous request
RFP_CreateRequest (…); // generates request

…. // exports request to external file

RFP_Free(…); // releases memory
CBIOS_Finish();

Advanced scenario:

CBIOS_ScanBoxes(); // scans for CRYPTO-BOX
CBIOS_GetBoxInfoI(…); // obtains CRYPTO-BOX info

RFP_PrepareRequest (…); // creates Request object
for (…)

RFP_AddRequestParam(…); // adds parameters

RFP_ClearRequest (…); // clears previous request
RFP_MakeRequest (…); // generates request
RFP_RequestFree (…); // releases request memory
…. // exports request to external file

RFP_Free(…); // releases memory
CBIOS_Finish();

After the request is generated it needs to be exported to an external file and sent to you as the
software vendor/distributor. Project and (optionally) end-user information must be present in
the request and may not be encrypted. Otherwise, you will fail to decrypt the request
information.

For security reasons, remote update data traffic is encrypted and decrypted using two RSA
key pairs (yours and the end-user's). Your public key and the end-user's private key are
programmed into the CRYPTO-BOX (pre-configured by MARX). These two keys are used for
encryption/decryption on the end-user side (CRYPTO-BOX must be attached). Your private
key and end-user's public key are exclusively known to you. They are used for encryption/
decryption on your side.

For more details see section 15.6 and <rfp.h>.

15.4. How to Generate Remote Update Code on Software Vendor Side
After you have received the request, the information on the project (end-user) is translated,
the corresponding RSA keys are obtained and the request is decrypted. Then, you create a list
of updates for several data objects. Here, knowledge of the project data objects map is
required. The DataObjects map contains information on several data objects inside the

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

15. Smarx®OS Remote Update Technology 109

CRYPTO-BOX memory partition. The DataObjects map support is provided with Smarx OS DO
API (see chapter Error: Reference source not found for more information).

Next, you prepare a list of update records (one record for one application or partition). Each
update record may contain several update steps (one step = an update action for one data
object).

A typical scenario:
… // import request
{
RFP_TranslateRequest(…); // obtain non encrypted information from request

CBIOS_PrepareRSAKey(…); // obtain distributor private RSA key
CBIOS_PrepareRSAKey(…); // obtain end-user public RSA key

RFP_TranslateRequest(…); // obtain encrypted information from request
}
// or (if parameters are passed)
{
RFP_LoadRequest(…);
RFP_TranslateRequestFromHandle (…); // obtain non encrypted information from

// request for (…)
RFP_GetRequestParam(…); // get non encrypted parameters
CBIOS_PrepareRSAKey(…); // obtain distributor private RSA key
CBIOS_PrepareRSAKey(…); // obtain client public RSA key

RFP_TranslateRequestFromHandle (…); // obtain encrypted information from
// request for (…)

RFP_GetRequestParam(…); // get encrypted parameters
}

RFP_ActSeqCreate(…); // create update sequence
RFP_ActSeqRecCreate(…); // create update record
// or
// RFP_ActSeqRecCreateEx(…); // create advanced update record
//(update/create/upgrade/delete partition command)
RFP_ActSeqAddStep(…); // add update step to the record

…
RFP_ActSeqAddStep(…); // add update step to the record
RFP_ActSeqAddRec(…); // add update record to the sequence
// or
// RFP_ActSeqRecFree(…); // release update record, if not included into

// update sequence

RFP_GenerateActCode(…);// generate activation code
RFP_ActSeqFree(…); // release memory, used for update sequence

… // export activation code into external file

RFP_Free(…); // release memory

When the activation code is generated, it can be sent to the end-user. The update information
is encrypted with RSA keys. This way it can be decrypted only, if the proper CRYPTO-BOX is
present.

For more details see section 15.6 and <rfp.h>.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

15. Smarx®OS Remote Update Technology 110

15.5. How to Activate Remote Update Code on End-User Side
After the end user receives the Activation Code, a Remote Update can be performed. The
unique transaction mark (generated for each request) guarantees it will be a one time update
and prevents any additional unauthorized activations. One Remote Update may include
information for several data objects and even partition updates. It is up to you to decide how
many update actions should be performed during one update sequence.

A typical scenario:
… // import activation code
CBIOS_ScanBoxes(); // scan for CRYPTO-BOX
CBIOS_OpenByIndex(...); // open CRYPTO-BOX
CBIOS_GetBoxInfo(…); // obtain BoxName

RFP_ProceedActCode(…); // perform remote update activation

For more details, see section 15.6 and <rfp.h>.

15.6. Remote Update API Calls
For a detailed description of RFP API calls, check out www.marx.com Support → →
Documents White Papers where Developer's Guides with API references for different →
development environments: C/C++/Delphi/VB and C# (Smarx4NET/CBIOS4NET) are
provided.

The Control Center section “Implementation with API” “API Components” “4 c) Remote → →
Update (RFP API” provides more information on available RFP API sample code for different
compilers.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

https://www.marx.com/en/support/documents#whitepapers

16. Extended Smarx®OS API Calls – CRYPTO-BOX® Reconfiguration 111

16. Extended Smarx®OS API Calls – CRYPTO-BOX®
Reconfiguration

16.1. General Issues
Extended Smarx OS API is intended for CRYPTO-BOX initial programming / reconfiguration. It
allows an initial formatting of a CRYPTO-BOX by offering functionality such as adding new
partitions, resizing RAM zones as well as deletion of existing partitions.

As an alternative to the Extended API calls, the Smarx OS Application Framework (SxAF,
see chapter 4.5) or the SmrxProg.exe command line tool (see chapter 7.4) can be used for
CRYPTO-BOX programming and configuration. In fact, the SmrxProg utility provides even
more options comparing to the Extended API.
For Linux and macOS platforms, the SmrxProg utility is the only option currently available.

IMPORTANT NOTE:
Because of security reasons, the Extended Smarx OS API as well as the other tools
mentioned above for CRYPTO-BOX formatting are intended to be used for CRYPTO-BOX
formatting/configuration on the software manufacturer/ distributor side only. They are not
intended to be used on the end-user side!

Extended Smarx OS API is provided for those customers who are looking to use the
CRYPTO-BOX reconfiguration functions in their applications. It is implemented as a
ActiveX/COM object for the Windows platform. Implementation as ActiveX provides a
convenient interface for customers and brings the following benefits:

• ActiveX COM interfaces are standard for all Win64/32 programming environments.
• Each Smarx OS API revision will affect only COM; there will be no need to rebuild

applications based on this component.
• Adding support for new environments (upon customer requests) will take less

development efforts.
• ActiveX COM component is signed by MARX (as its publisher), to be considered as a

“trusted” module/component .

Here is a list of extended Smarx OS API functions, implemented in XSMRXCOM ActiveX:

XSMRX::Clear clears all data in virtual CRYPTO-BOX image
XSMRX::ReadBox opens CRYPTO-BOX, reads information and saves all

extended data in virtual image
XSMRX::GetBoxInfo gets BoxInfo structure data obtained from CRYPTO-BOX

and stored in virtual image
XSMRX::GetBoxLabel gets CRYPTO-BOX label stored in virtual CRYPTO-BOX

image
XSMRX::GetAppRec returns application(partition) data obtained from

CRYPTO-BOX and stored in virtual image (by App Id)
XSMRX::GetAppRecByIndex returns application(partition) data obtained from

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

16. Extended Smarx®OS API Calls – CRYPTO-BOX® Reconfiguration 112

CRYPTO-BOX and stored in virtual image (by Index)
XSMRX::GetAvailableRAMSize returns size of free memory, available in virtual image
XSMRX::SetBoxLabel sets CRYPTO-BOX® label stored in virtual CRYPTO-BOX

image
XSMRX::AddApp adds application (partition) to the virtual image list
XSMRX::RemoveApp removes application (partition) from the virtual image list
XSMRX::FormatBox formats CRYPTO-BOX with data, taken from virtual

image
XSMRX::SetUPW changes User password for attached CRYPTO-BOX
XSMRX::SetAPW changes Admin password for attached CRYPTO-BOX
XSMRX::ErrorToText returns text description of error

16.2. CRYPTO-BOX Configuration Scenario
The main idea of extended Smarx OS functionality is to encapsulate all required CRYPTO-BOX
function calls into one transaction, which will internally execute a set of steps, prepared in
advance. The rest of the function calls will work with a virtual CRYPTO-BOX image, stored in
memory.

The first function XSMRX::ReadBox() has to be called before any other calls. It will read the
attached CRYPTO-BOX to obtain all data from it, create and fill up virtual CRYPTO-BOX
images and place them in memory. After that, the other XSMRX functions can be called to
get data from the virtual image and make changes.

Function XSMRX::FormatBox() will take all needed information from the virtual image,
format the CRYPTO-BOX and create all required partitions. It will also clear the virtual image
and release all occupied memory.

Function XSMRX::Clear() will clear the virtual image and release all memory.

Functions XSMRX::SetAPW(), XSMRX::SetUPW() provides the ability to change
administrator (APW) and user (UPW) passwords and are similar to those used in the standard
CBIOS API.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

16. Extended Smarx®OS API Calls – CRYPTO-BOX® Reconfiguration 113

Fig. 13.1:
Extended Smarx®OS API

16.3. Extended Smarx®OS API Calls (In Detail)

public void XSMRX::Clear ()

Description: Clears all data in virtual CRYPTO-BOX image

Parameters: none

Return: none

public int XSMRX::ReadBox (int iBoxIndex, System.Array bAPW)

Description: Opens the CRYPTO-BOX, reads information and saves all extended data in a
virtual image. This function has to be called before other functions, working

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

XSMRX::FormatBox

XSMRX::Clear

XSMRX::ReadBox

XSMRX::GetBoxInfo

XSMRX::GetAppRec /
_GetAppRecByIndex

XSMRX::GetAvailableRAMSize

XSMRX::AddApp

XSMRX::RemoveApp

Virtual
CRYPTO-BOX® image

XSMRX::GetBoxLabel

XSMRX::SetBoxLabel

Copyright © MARX® CryptoTech LP 2002-2011

XSMRX::SetAPW/UPWXSMRX::ErrorToText

16. Extended Smarx®OS API Calls – CRYPTO-BOX® Reconfiguration 114

with the CRYPTO-BOX. It encapsulates CBIOS_EX calls which enter
extended mode, read the CRYPTO-BOX and leave extended mode.

Parameters: iBoxIndex – number of attached CRYPTO-BOX
bAPW – administrative password

Return: XSMRX_SUCCESS – if success, otherwise CBIOS_EX level error (call
ErrorToText() for description).

public int XSMRX::GetBoxInfo (out XSMRXW32.BoxInfo IBoxInfo)

Description: Returns BoxInfo structure data obtained from the CRYPTO-BOX and stored
in the virtual CRYPTO-BOX image

Parameters: (Out) IBoxInfo – structure where all CRYPTO-BOX-related information stored
returns: XSMRX_SUCCESS – if success,
XSMRX_ERROR_EMPTY_IMAGE – virtual image is empty

Return: XSMRX_SUCCESS – if success,
XSMRX_ERROR_EMPTY_IMAGE – virtual image is empty.

public int XSMRX::GetBoxLabel (out System.Array saLabel)

Description: Returns CRYPTO-BOX label obtained from the CRYPTO-BOX and stored in
virtual CRYPTO-BOX image

Parameters: saLabel – CRYPTO-BOX Label

Return: XSMRX_SUCCESS – if success,
XSMRX_ERROR_APP_NOT_FOUND – application not found.

public int XSMRX::GetAppRec (ushort wAppId, out XSMRXW32.AppRec IAppRec)

Description: Returns application(partition) data obtained from the CRYPTO-BOX and
stored in virtual CRYPTO-BOX image

Parameters: wAppId – application(partition) number
lAppRec – application(partition) record

Return: XSMRX_SUCCESS – if success,
XSMRX_ERROR_APP_NOT_FOUND – application not found,
XSMRX_ERROR_EMPTY_IMAGE – virtual image is empty.

public int XSMRX::GetAppRecByIndex (ushort wAppIndex, out XSMRXW32.AppRec
IAppRec)

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

16. Extended Smarx®OS API Calls – CRYPTO-BOX® Reconfiguration 115

Description: Returns application(partition) data obtained from the CRYPTO-BOX and
stored in a virtual CRYPTO-BOX image

Parameters: wAppINDEX – index of application(partition) in CRYPTO-BOX
lAppRec – application(partition) record

Return: XSMRX_SUCCESS – if success,
XSMRX_ERROR_APP_NOT_FOUND – application not found,
XSMRX_ERROR_EMPTY_IMAGE – virtual image is empty.

public int XSMRX::GetAvailableRAMSize (out int iRAMSize)

Description: Returns size of free memory, available in virtual CRYPTO-BOX image

Parameters: iRAMSize – free memory available in CRYPTO-BOX

Return: XSMRX_SUCCESS – if success,
XSMRX_ERROR_EMPTY_IMAGE – virtual image is empty.

public int XSMRX::SetBoxLabel (System.Array saLabel)

Description: Sets the label stored in a virtual CRYPTO-BOX image to be programmed later
to the CRYPTO-BOX

Parameters: saLabel – CRYPTO-BOX Label

Return: XSMRX_SUCCESS – if success,
XSMRX_ERROR_EMPTY_IMAGE – virtual image is empty.

public int XSMRX::AddApp (XSMRXW32.AppRec IAppRec)

Description: Adds a new application (partition) to the list, stored in a virtual CRYPTO-BOX
image to be used when programming the CRYPTO-BOX

Parameters: IAppRec – application(partition) record

Return: XSMRX_SUCCESS – if success,
XSMRX_ERROR_EMPTY_IMAGE – virtual image is empty,
XSMRX_ERROR_APP_ALREADY_EXISTS – application already exists,
XSMRX_ERROR_APP_NO_FREE_RAM – not enough free memory.

public int XSMRX::RemoveApp (ushort wAppId)

Description: Removes an application (partition) from the list, stored in a virtual CRYPTO-
BOX image to be used when programming the CRYPTO-BOX

Parameters: wAppId – application(partition) number

Return: XSMRX_SUCCESS – if success,

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

16. Extended Smarx®OS API Calls – CRYPTO-BOX® Reconfiguration 116

XSMRX_ERROR_EMPTY_IMAGE – virtual image is empty
XSMRX_ERROR_APP_NOT_FOUND – application not found.

public int XSMRX::FormatBox (int iBoxIndex, System.Array bAPW)

Description: Formats the CRYPTO-BOX with data taken from a virtual CRYPTO-BOX
image. This function has to be called after XSMRX::ReadBox and other
functions, changing the CRYPTO-BOX geometry. It encapsulates CBIOS_EX
calls, which enter extended mode, format the device, write extended data,
create partitions and leave extended mode.

Parameters: iBoxIndex – number of attached CRYPTO-BOX
bAPW – administrative password

Return: XSMRX_SUCCESS – if success,
XSMRX_ERROR_EMPTY_IMAGE – virtual image is empty,
XSMRX_ERROR_BOX_SIZE_TOO_SMALL – CRYPTO-BOX size is smaller
than virtual image,otherwise CBIOS_EX level error (call ErrorToText() for
description).

public int XSMRX::SetAPW (int iBoxIndex, System.Array bAPW, System.Array bNewAPW)

Description: Changes administrator password (APW) for the attached CRYPTO-BOX. This
function encapsulates CBIOS_EX calls, which enter extended mode, change
APW and leave extended mode.

Parameters: iBoxIndex – number of attached CRYPTO-BOX
bAPW – administrative password
bNewAPW – new administrative password

Return: XSMRX_SUCCESS – if success, otherwise CBIOS_EX level error (call
ErrorToText() for description).

public int XSMRX::SetUPW (int iBoxIndex, System.Array bAPW, System.Array bUPW)

Description: Changes user password (UPW) for the attached CRYPTO-BOX. This function
encapsulates CBIOS_EX calls, which enter extended mode, change UPW
and leave extended mode.

Parameters: iBoxIndex – number of attached CRYPTO-BOX
bAPW – administrative password
bUPW – new user password

Return: XSMRX_SUCCESS – if success, otherwise CBIOS_EX level error (call
ErrorToText() for description).

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

16. Extended Smarx®OS API Calls – CRYPTO-BOX® Reconfiguration 117

public void XSMRX::ErrorToText (int iError, out string sText)

Description: Returns text description of error.

Parameters: iError – error code
sText – text string, which contains error description

Return: none

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

17. Professional Software Protection 118

17. Professional Software Protection
In this chapter we provide some suggestions and innovative ideas and techniques for a secure
integration of the CRYPTO-BOX into your software. You should consider these hints when you
develop applications that access the CRYPTO-BOX using the Smarx OS Programming
Interface.

17.1. Important Rules for Professional Software Protection
1. Never give a testing routine a self-describing name:
For example, if you use the function name CheckProtection in a DLL library, the cracker will
immediately know where in the code to focus his effort.

2. Avoid unnecessary error messages:
If the program gives an error message after a negative check routine, the cracker can simply
search the program code for the error message to track down the procedure that called it.
When error messages are unavoidable, hide them as much as possible and create them
(dynamically) in real time rather than use resources for them. It's also a good idea to encrypt
the data and the procedure that creates an error message, which makes it much more
difficult for the cracker to find in the disassembled code.

3. Use the power of the CRYPTO-BOX encryption algorithms for important variables and

licensing options:
The encryption engine is the most important and powerful part of the CRYPTO-BOX because
it makes the module indispensable and prevents emulation attacks. The current
CRYPTO-BOX models support two encryption algorithms. Symmetric: AES/Rijndael, and
asymmetric: RSA (only the CRYPTO-BOX SC provides hardware-based RSA, the
CRYPTO-BOX XS contains a software implementation of RSA). Random sequence generation
and MD5 hash calculation are also supported.

Smarx OS provides developers with universal support of encryption algorithms. It is possible
to implement protection/authentication/e-commerce solutions that benefit from the newest
symmetric/asymmetric encryption techniques – on local computers or networks
(Intranet/Internet).

Example#1: Securing User Password (UPW) with hardware based encryption

One possibility is to use hardware based encryption (not requiring User login to the
CRYPTO-BOX) to secure UPW. In other words, the program can store UPW encrypted with
CRYPTO-BOX Fixed AES or some extra AES keys of the CRYPTO-BOX SC model, or even
CRYPTO-BOX SC RSA key. It means that there is no other way to obtain decrypted UPW
value than to attach a valid CRYPTO-BOX.

Possible modifications of this approach to consider:

• keep hardware encrypted and digitally signed UPW in RAM3 zone;

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

17. Professional Software Protection 119

• extend the above scenario with RSA encryption, where the program itself keeps public
key of some RSA key pair A, while its private key is stored in the CRYPTO-BOX and
validation involves this key pair.

Also, for some protection strategies, it makes sense to consider using hardware encryption
even without using further functions of the CRYPTO-BOX.

This recursive protection (where the access password to the CRYPTO-BOX is encrypted by its
internal cryptography) can be used to achieve a high level of security when combined with
additional techniques such as:

• real-time multi-threading;
• anti-debug protection;
• hardware based digital signatures (the program code is digitally signed with the

hardware based cryptography)

Example#2: Using asymmetric encryption (RSA) for secure delivery of symmetric (AES) key

You can generate RSA key pairs and use them for secure delivery of the Rijndael session keys
via the Internet to organize secure sessions. You can use hash calculation and random
sequence generation to verify passwords (without storing real values) or to authenticate end-
users.
It is possible to change encryption keys dynamically with the use of a random sequence
generator. If the key is dependent on the date, the year or the length of the path of the
working directory, it will lead to pseudo static encryption keys. A cracker may bypass an
encryption sequence but his result will be worthless with changing running conditions. Use
the checking responses to initiate the key for the encryption algorithm.

4. Vary the CRYPTO-BOX function calls every time the software is run:
This protection strategy will create very strong security, especially if you use different queries
and other function calls when the application is started next time (see also point 7). Check
different data in the CRYPTO-BOX. Do function calls only once in a while, maybe every other
day or week. The main idea is: what's queried at one run does not necessary allow
conclusions on the results of the next run.

5. Wait a while before you show error messages when the CRYPTO-BOX is not found:
Wait a while before displaying an error message and put the error routine into another part of
the program. This makes it more difficult for the cracker to locate the check routine.

6. Use checksums in your application:
If you test your EXE and DLL files, and even other files, for changes, crackers will be unable to
modify them with patches. However, they will still be able to modify the code directly in
memory, so it is a good idea to test for changes to the application code in memory. You can
improve protection by performing checksums for smaller sections of your program. When you
perform checksums on smaller sections of the program, you make it much more difficult for
crackers.

7. Use more than one protection routine:

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

17. Professional Software Protection 120

Any protection routine should test only a part of the protection and should not contain all
protection options. This prevents the cracker from understanding the complete protection
scheme if one routine is discovered.

8. Change the application's behavior during runtime:
Make your protected application as dynamic as possible. Merge dummy queries with real
queries. You will discourage the cracker if every step could be a trap. Insert dummy calls to
the CRYPTO-BOX. The dummy calls could initialize variables that are only partly needed in
other program parts.

9. Avoid simple Yes/No decisions:
When you read information from the CRYPTO-BOX, use complicated mathematical
expressions, which use floating-point operations instead of simple integer operations. This will
lead to very complicated structures on a machine code level and hackers will have more work
deducing what is really happening.

Example:

Instead of incorporating a statement like "if ID_Code=144 then", apply the following
statement:
if(SQRT{IDCode}+8={IDCode+16}OVER 8)then ...

10. Store program parameters and variables in the CRYPTO-BOX:
If you keep the registration information in the Windows registry, it can be discovered. The
CRYPTO-BOX contains memory that you can program on the fly. Use this feature to store
parameters that are essential for the program to run. This way you can check the presence of
a security device indirectly with a delayed reaction and it will be very difficult for a hacker to
understand.

Example:

"Calculating the surface of a circle"

Store the string "3.1415" in the CRYPTO-BOX memory before delivering your program. At
runtime read this string on the fly and transform it into a number that is used to initialize a
temporary variable, let's say "PiFromMARX". Then calculate:
Surface=PiFromMARX*Radius^2

11. Spread protection routines and separate Queries and Logical Divisions:
It is a good idea to separate queries and logical decisions. Place the function calls in different
sections of your program. Furthermore, use the returned values to control the program flow.
You may initialize program control parameters with values read from the memory of a
CRYPTO-BOX. This way you create checking procedures that are spread throughout the
program. So, the cracker must first study which parts belong together.

Example:

Store a returned value in a global variable. Then check its value in a different program
module. Depending on the result, you set a new variable "NewVar". A third subroutine tests
"NewVar" and makes a decision to stop the program to display an error message. The original
returned ID Code is hidden well and the relation to this value is no longer obvious.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

17. Professional Software Protection 121

12. Use long registration information:
The longer the registration file or number, the longer it takes to understand it. If the
registration number is sufficiently long, it may contain essential information that the program
needs. If such a program is patched, it will not run correctly.

13. Test several current bits of data when using time-limit protection:
Check the time of system log files. If the current date or time is the same or smaller than when
the program was run previously, it will be clear that the time was adjusted. Also, you can save
the date and time after each launch of the program and then test the current date and time
during a new launch.

14. Use long testing routines:
Routines that take only a few seconds when a program is running may take a longer time to
run while disassembling or debugging: especially when it is not obvious if these routines are
important for the protection or if it is just useless code.

15. If you distribute an application with certain features and functions disabled, you
should not include the full features and functions in this distribution:
Many developers make the mistake of including the code for a function that will be executable
only after registration (the ability to save files, for example). In those cases, the cracker can
modify the code so that the function will work.

A better approach is to include parts of the code (a sufficiently long bit) together with the full
version. With such a protection scheme, it's virtually impossible for the cracker to remove the
protection. You can also encrypt the code for the limited function. When the customer buys
the full version, the proper CRYPTO-BOX is sent out which is used to decrypt the code for the
limited functionality.

16. If your program has been cracked, release a new version:
Maybe the effort for implementing protection was not sufficient. Also pay attention to the
Anti-Debugging and Anti-Disassembling tricks in the following sections 9.2 and 9.3. Frequent
updates to your program make an older, cracked version unattractive and the new version
comes with an improved protection. The cracker needs to start from the very beginning.

17. Use the best, current compression or encoding programs to encode your software:
Keep your compression or encoding program up to date. A good compressor will be difficult
for a cracker to remove.

18. If your application uses a registration number, that number should never be visible in
memory:
This means that it should be impossible to find your program's registration number when the
program is being debugged. When programming with a method that checks to see whether
the correct registration number was entered, do something other than just comparing two
strings. The best way is to encode the entered registration number and the correct
registration in the same way. In this way, the two numbers can be compared without risk of
the cracker discovering the code. You can also use the CRYPTO-BOX memory to store the
registration information. You might also compare a checksum of the entered registration

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

17. Professional Software Protection 122

number with the checksum of the correct registration number, though if you do so, you will
have to use more checking methods to really make sure that the correct registration number
was entered, rather than modified in accordance with the checksum that the cracker had
seen in his debugger.

19. Use the Internet and require online registration:
When a program is registered online, its registration data is sent to a particular server. In its
most basic form, this server then sends back information to the program telling it whether the
registration was successful or not. However, the server can also be used to send data that the
program needs in order to launch the registered application. This data may range from
important parts of the code to a key needed to decode parts of the program.

20. Do not forget to test your software's protection thoroughly:
Test your software protection for all operation systems which are supported by your
application. Often, protection that worked on older Windows versions doesn't work correctly
with Windows 8 or higher.

17.2. Tips for Protection Against Debugging
Anti-debugging and anti-disassembling actions
Protecting your application against debugging and disassembling is very important. Without
any debugging protection it is much easier for a cracker to understand the protection
mechanism you are using. Even simple anti-debugging tricks can complicate debugging and
anti-disassembling tricks make it hard to understand the debugged code. A good combination
of both makes it much more difficult for a cracker to understand and remove even a simple
protection.

Many strategies and options for an effective protection against debugging and disassembling
with SoftICE, IDA Pro, TRW2000 or Turbo Debugger (you can find a lot of them in the
Internet) are written in assembler. This allows you to develop small and effective routines.
Many high-level programming languages allow you to insert assembler code.

Pay attention: Many anti-debugging tricks which worked well under older Windows versions
may not work under the recent Windows versions. Therefore it is very important to test your
software thoroughly under all environments you want to support. Anti-disassembling tricks
are mostly independent from the operating system, so you should use them as much as
possible.

First your application should perform a simple test to determine if a debugger is present in the
memory at startup and display a warning message to remove the debugger. The cracker will
probably find this simple test easily and remove it. Therefore, you should perform at least one
more test at a later time – but without displaying any warning or error messages. Instead, let
your program "freeze" or do something unexpected (wrong calculations, just exit without any
error message) which makes it difficult to understand for the cracker.

Below is an example of how to detect SoftICE by calling INT 3. This is one of the most well
known anti-debugging tricks and works in all versions of Windows.

INT 3h is called with the following registers: EAX=04h und EBP=4243484Bh ("BCHK" string).
If SoftICE is active in memory , the EAX register will contain a value other than 4.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

17. Professional Software Protection 123

 mov ebp, 04243484Bh ; 'BCHK'
 mov ax, 04h
 int 3 ; Trap debugger.
 cmp al,4
 jnz SoftICE_Detected

 SoftICE_detected:

The following example illustrates how to detect via INT 41 if a debugger is present. This
interrupt is used by Windows debugging interface.

 mov eax,0x4f ; AX = 004Fh
 int 0x41 ; INT 41 CPU - MS Windows debugging kernel -
 ; check for debugger installation
 cmp ax,0xF386 ; AX = F386h if a debugger is present
 jz SoftICE_detected
 xor eax,eax

 SoftICE_detected:

This example checks via the API-function "CreateFile" if the SoftICE driver is loaded.

 {
 HANDLE hFile;

 ; "\\.\NTICE" without esc sequences
 hFile = CreateFile("\\\\.\\NTICE",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

 if(hFile != INVALID_HANDLE_VALUE)
 {
 CloseHandle(hFile);
 return TRUE;
 }

 return FALSE;
 }

This example checks if a potential cracker has set breakpoints on key API functions in a DLL
(in this sample GetDlgItemTextA). Breakpoints on DLL functions of the operating system are
often used to understand what is done inside the application:

LEA ESI, GetDlgItemTextA
CALL CheckForSoftICEBP
CMP EAX, "xxxx" <-- Substitute for your own identifier.
JE SoftICEBPIsSet <-- Send bad cracker to some really
<-- horrid routine.
CALL ESI

CheckForSoftICEBP:
PUSH ESI
PUSH DS
PUSH CS

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

17. Professional Software Protection 124

POP DS
MOV ESI, [ESI+2] <-- Get dll function jmp address.
MOV ESI, [ESI] <-- Get dll function real address.
MOV EAX, ESI <-- Get first dword of dll function.
AND EAX, 0FFh <-- Use only first byte.
CMP AL, 0CCh <-- INT 3 ?.
MOV EAX, 'xxxx' <-- Your identifier.
JE BPXSet
XOR EAX, EAX <-- No BPX.

BPXSet:
POP DS
POP ESI
RET

Another possibility to detect debuggers is to set a timer which controls the execution time of a
program routine. The routine runs much slower during analysis with a debugger.

17.3. Protection against Disassembling
Ways of making software analysis even more difficult.
In addition to anti-debug protection, professional countermeasures against disassemblers are
a must to protect the program from crackers.

The following are examples of two different approaches.
The first approach to consider is "self modifying code". This technique, applied correctly,
does not represent any threat to the safety of the system and can be successfully called
irrespective to the level of the user privileges.

A simple example of using the WriteProcessMemory function to create the self-modifying
code is given in the program listing below. It replaces the instruction of the infinite loop JMP
short $-2 with a conditional jump JZ $-2, which continues normal execution of the program.
This is a good way of complicating the analysis of the program for the cracker, especially if the
call of "WriteMe" is not located in the vicinity of changeable code, but in a separate thread.
It is even better if the modified code looks natural and doesn't arouse any suspicions. In such
a case, the cracker may waste a lot of time wandering along the branch of code that never
gains control during program execution.

int WriteMe(void *addr, int wb)
{

HANDLE h=OpenProcess(PROCESS_VM_OPERATION|PROCESS_VM_WRITE,
true, GetCurrentProcessId());
return WriteProcessMemory(h, addr, &wb, 1, NULL);

}

int main(int argc, char* argv[])
{

_asm {
push 0x74 ; JMP --> > JZ
push offset Here
call WriteMe
add esp, 8

Here: JMP short here
}

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

17. Professional Software Protection 125

printf("#JMP SHORT $-2 was changed to JZ $-2\n");
return 0;

}

There are limitations to consider with this approach. Using WriteProcessMemory is only
reasonable in compilers that compile into memory or in unpackers of executable files.

Another limitation of WriteProcessMemory is its inability to create new pages. Only the pages
already existing are accessible to it. But what can be done, for example, if another amount of
memory must be allocated for the code dynamically generated "on the fly"? Calling the heap
control functions, such as malloc, will not be helpful, since executing the code in the heap is
not permitted. But the possibility of executing code in the stack is helpful.

Executing code in the stack is permitted because many programs and the operating system
need an executable stack to perform certain system functions. This makes it easier for
compilers and compiling interpreters to generate code.

Therefore, using the stack to execute self-modifying code is admissible and independent of
the system (i.e, it is universal). Besides, such a solution eliminates the following drawbacks of
the WriteProcessMemory function.

First – It is extremely difficult to reveal and trace the instructions that modify an unknown
memory location. The cracker will have to laboriously analyze the protection code without any
hope of quick success (provided that the protective mechanism is implemented without
serious bugs that facilitate the cracker's task).

Most attackers will stop their efforts at this point.

Second – At any moment, the application may allocate as much memory for the stack as it
sees fit and then, when it becomes unnecessary, free that space. Fortunately, John von
Neumann's principle is fair: Program code can be considered data at one moment and
executable code at another. This is just what is needed for normal functioning of all
unpackers and decryptors of executable code!

Third – Repeated application of such technology in various (many) different program parts,
invoked later, at unpredictable time or situation, will exhaust crackers. A supposed cracked
program will fail to execute after some time – maybe after days and weeks and drive crackers
crazy.

However, programming code that will be executed in the stack involves several specific issues
that sometimes are beyond the scope of this manual.

In many cases, such an approach requires knowledge of support for inline assembler inserts
by the compiler, which may be not very pleasant for application programmers uninterested in
instructions and the structure of the microprocessor. To solve this using a high-level language
exclusively, the stack function must pass the pointers (as arguments) to the functions called
by it. This is a little inconvenient, but a shorter way doesn't seem to exist.

A simple program that shows how functions are copied to and executed in the stack is given in
the listing found below.

void Demo(int (*_printf) (const char *,...))
{

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

17. Professional Software Protection 126

_printf("Hello, World!\n");
return;

}

int main(int argc, char* argv])
{

char buff[1000];
int (*_printf) (const char *,...);
int (*_main) (int, char **);
void (*_Demo) (int (*) (const char *,...));
_printf=printf;

int func_len = (unsigned int) _main - (unsigned int) _Demo;
for (int a=0; a<func_len; a++)
buff[a]= ((char *) _Demo)[a];
_Demo = (void (*) (int (*) (const char *,...))) &buff[0];

_Demo(_printf);
return 0;

}

The question arises: What is the benefit of running a function in the stack? The answer is: The
most significant advantage of such a procedure is the ability to change the code of a function
running in the stack "on the fly". For example, it can be decrypted. The encrypted code
severely complicates disassembling and strengthens protection. Certainly, encrypting just the
code is not a serious obstacle for a skilled cracker equipped with a debugger or an advanced
disassembler like IDA Pro.

However, if used in combination with the encryption functions of the CRYPTO-BOX, an
"external crypto co-processor" is added to your protected application. This part is not
accessible to even the most advanced debugger or disassembler!

Without that essential program part, the application will not run. By doing it this way,
maximum security is achieved. The certified AES/Rijndael-Algorithm runs on the external
CRYPTO-BOX and only the results of encryption/decryption tasks are exchanged with the
application – never the keys. Furthermore, the new CRYPTO-BOX SC contains a secure Smart
Card chip which offers hardware-based RSA encryption.

There are endless possibilities to take advantage of the various encryption and memory
options of the different CRYPTO-BOX models:

The CRYPTO-BOX is additionally equipped with a hardware implementation of a "White
Noise Random Generator". Best suited for random key generation, or just to "create noise"
on data lines...

Debugging, disassembling, tracing: The CRYPTO-BOX in combination with sophisticated
programming techniques provides the answer against crackers and their tools.

17.4. .NET Specific Protection
There is a high risk of reverse engineering for .NET applications and assemblies, because of
complete transparency of MSIL (Microsoft Intermediate Language) internally used by this
platform. The most efficient protection against reverse engineering for .NET is extensive
obfuscation of the managed code, its control flow and related structures: Namespaces,

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

17. Professional Software Protection 127

Types, Methods, Events, Properties and Fields. The obfuscation should be combined with
resources encryption, merging and embedding assemblies, and protection against direct
disassembling.
Therefore we strongly recommend to obfuscate your project before releasing it.
There are many different .NET obfuscators available. We can recommend the open source
obfuscator Confuser https://mkaring.github.io/ConfuserEx/
An example which demonstrates usage of Confuser obfuscator can be found in the PPK:
[Smarx OS PPK root]/SmarxOS-Samples/Security/.NetProtection

Professional level of obfuscation can be combined with AutoCrypt based protection of the
application itself (EXE.NET) and CRYPTO-BOX based license management for the product.

17.5. Sample Code
The Smarx OS Protection Kit (PPK) contains sample code for (for C++, Delphi and C#) which
demonstrates how to make the integration of the CRYPTO-BOX into your code more secure
by:

• Encrypting the UPW of the CRYPTO-BOX in the code

• Using obfuscation (for C# and C++ projects)

You can find these samples in PPK Control Center at Implementation with API Demo Code →
under points 3. and 4.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

https://mkaring.github.io/ConfuserEx/

17. Professional Software Protection 128

18. Appendix A: Technical Data

CRYPTO-BOX® SC
(CBU SC or CBUCSC)

CRYPTO-BOX® XS/Versa
(CBU XS/Versa or CBUCXS)

Controller Chip Secure Smartcard based micro
controller with USB interface

Secure Smartcard based micro controller
with USB interface

Controller Chip
security
certifications

EAL4+ EAL4+

Firmware Proprietary MARX Proprietary MARX

Supported
Operating Systems

Windows, Linux, macOS,
iOS*, Android*

Windows, Linux, macOS,
iOS*, Android*

Algorithms
implemented in
hardware

AES 128 bit (CBC/OFB mode),
RSA up to 2048 bit key length,
others (i.e. ECC) on request

AES 128 bit (OFB mode),
RSA up to 2048 bit key length (on driver
level)

Memory size (total) 72Kbytes, ca. 30 KBytes free 4, 32 or 64Kbytes

Read/write rate of
the internal memory

Read/write: ca. 80 Kbytes/s Read/write: ca. 12 KBytes/s

User/Administrator
Password (PIN/PUK)

Up to 16 bytes sequence

Casing & LED Metal Designer Case, LED displays the operating mode,
eye for key ring/lanyard

Connector USB Type A or USB Type C

Programming
memory

Typically more than 1 million cycles;
100 000 guaranteed

Data retention min. 10 years

Electrical
certifications

CE, FCC, RoHS, WEEE, USB Logo

Dimensions USB A variant: 14 x 7 x 32,5 mm / 0.55” x 0.28” 1.28”
USB-C variant: 22,5 x 11 x 4 mm / 0.89" x 0.43" x 0.16"

Weight USB A variant: 7,5 g / 0.265 oz
USB-C variant: 3g / 0.11oz

Temperature range -10°C to +70°C / 14°F to 158°F

Humidity 0% to 95% relative humidity

* network mode

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

19. Appendix B: Support & Collaboration with Customers 129

19. Appendix B: Support & Collaboration with Customers
Technical Support

 In North America:
• Phone: 1-770-904-0369
• Email: support@marx.com

 In Europe and worldwide:
• Phone: +49 (0) 8403/9295-0
• Email: support-de@marx.com

MARX offers several outstanding services:

End-user Support

Even end-users can get direct support from MARX, e.g. downloads of the newest
CRYPTO-BOX drivers. This saves your support staff a lot of effort and keeps your cost low! Of
course, we will never disclose confidential material to your end-users.

Current CRYPTO-BOX device drivers, redistributable components or the MARX Analyzer
diagnostic tool are published at www.marx.com.

Training for developers

On request we offer training courses to give you an introduction to secure implementation of
the CRYPTO-BOX into your applications.

Beta Test Program

Customers having a valid support level option (see www.marx.com/en/support/support-level-
options and would like to participate may enroll for free. They will receive the latest software
updates and other benefits before new products hit the market.

Please contact support@marx.com for detailed information.

Customer-specific solutions, special models, OEM

Our hardware and software components can, in many cases, be customized to your particular
requirements. Options, and terms and conditions, are available on request.

Just-in-time delivery

Just-in-time distribution allows you to profit from low storage costs. In addition to our fast
delivery service, we can also fill orders the same day we receive them. Orders received before
10 a.m. (CET) can usually be shipped on the same day (with the exception of custom-made
products and during holidays).

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

mailto:support@marx.com
https://www.marx.com/en/support/support-level-options/
https://www.marx.com/en/support/support-level-options/

19. Appendix B: Support & Collaboration with Customers 130

Customer-specific product labeling

Custom labeling provides you with more flexibility when distributing your product together
with the CRYPTO-BOX. It allows quick identification in your distribution chain (e.g. by a
scanner) or at the customer site. MARX offers a wide range of possibilities: from labeling with
a data matrix code (2D-barcode); see Figure B.1) or serial numbers, laser printing, right
through to adhesive labels or overprinting. Just ask us - we would be happy to provide a
quote.

Fig. B.1: Data Matrix Code (l.) and Serial number (r.)

Colored cases for the CRYPTO-BOX

Additional to "shiny chromium" you may choose between two additional color variants: Black
and Titanium. Using different colors can be useful if you sell different software products and
want to distinguish the CRYPTO-BOX modules you ship with them.
Furthermore, customer specific colors are possible upon request - just ask us.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

20. Appendix C: Distributors 131

20. Appendix C: Distributors

USA
MARX CryptoTech LP
489 South Hill Street
Buford, GA 30518, USA
www.marx.com

Sales:
Support:
Phone:
E-Mail:

sales@marx.com
support@marx.com
(+1) 770-904-0369
contact@marx.com

Germany
MARX Software Security GmbH
Vohburger Str. 68
D-85104 Wackerstein
www.marx.com

Sales:
Support:
Phone:
E-Mail:

sales-de@marx.com
support-de@marx.com
+49 (0) 8403 9295-0
contact-de@marx.com

Italy
CS Computers S.r.l.
Via Indipendenza, 4-12
I-47033 Cattolica (FO)
www.cscomputers.it

Contact:
Phone:
E-Mail:

Giorgio del Bene
+39 (0) 541/963-801
cscomp@cscomputers.it

Poland
INLOGICA Sp. z o.o. Sp. K.
ul. Św. Michała 43
61-119 Poznań
www.inlogica.com

Contact:
Phone:
E-Mail:

Grzegorz Bigos
+48 61 2785830
office@inlogica.com

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

mailto:office@inlogica.com
mailto:cscomp@cscomputers.it
http://www.cscomputers.it/
mailto:contact-de@marx.com
mailto:support-de@marx.com
mailto:sales-de@marx.com
http://www.marx.com/
mailto:contact@marx.com
mailto:support@marx.com
mailto:sales@marx.com
http://www.marx.com/

21. Appendix D: Glossary 132

21. Appendix D: Glossary
Access Codes
A set of codes (passwords) required to
access a CRYPTO-BOX. MARX assigns these
codes. They are unique for every company
we ship to. The Access Codes are included in
the CRYPTO-BOX profile (.trx file).

AES/Rijndael
Advanced Encryption Standard. The Rijndael
data encryption formula was named by the
U.S. National Institute of Standards and
Technology as the winner of a three-year
competition involving some of the world's
leading cryptographers. This encryption
algorithm is used in the CRYPTO-BOX.

API
Application Programming Interface is a set of
routines a program can call in a function
library or in the operating system. MARX
provides a set of APIs (→CBIOS API , →DO
API, →RFP API, →Smarx®API,
→CBIOS4NET, → Smarx4NET) to access the
CRYPTO-BOX within the →Source Code of
your application. Libraries for many
platforms and development environments
are provided in the →PPK.

Arguments
Parameters passed to →Function Calls. The
arguments contain data required by
functions to execute correctly.

Authentication
The establishing of identity of a person or
process. Authentication helps to verify that a
request came from a genuine source.

AutoCrypt
Contains a →Wrapper which provides
automatic protection for programs. Makes
applications tamper-proof and reduces size.
No source code required. See chapter 4.4 for
more information.

Binary shell
→Wrapper.

CBIOS API
The core component of the →Smarx®OS
interface. It provides access to CRYPTO-BOX
hardware on local computer or in the
network: returns information like serial
number, developer-ID or firmware version
and provides access to the CRYPTO-BOX
internal memory and encryptions functions.
See chapter 12 more information.

CBIOS4NET
Object oriented component based →API
interface for .NET developers which
combines multiple →Smarx®OS interfaces for
the CRYPTO-BOX: →CBIOS API (local and
network mode), →DO API and →RFP API. In
contrast to →Smarx4NET it supports both
local and network access to the CRYPTO-
BOX, contains unmanaged code and requires
VC redistributables and platform specific
assembly (32 or 64bit). See chapter 10.13.2
for more details.

CBUSetup
Tool for installing CRYPTO-BOX →Device
Drivers and supplemental files for Windows
on the end-user's computer. See chapter 8
for more information.

Compression
→AutoCrypt provides compression (similar to
Zip) to make applications tamper-proof and
reduces size.

Cloud Security (WEB API)
Online authentication (only users with a valid
CRYPTO-BOX have access to the content)
with for many fields of application: support
only for paying customers, access to content
only for authorized service personnel. Also
ideal for subscription services and remote
activation of software (including updating

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

21. Appendix D: Glossary 133

licenses in the CRYPTO-BOX). See
www.marx.com Products Cloud Security→ →
for more details.

Counter
A value used for monitoring the total number
of program execution, access times, etc. A
counter might be either incrementing or
decrementing.

CRYPTO-BOX®

Security hardware attached to a computer
through →USB, parallel or serial port. Mostly
used for software protection, but may serve
for access control purposes as well. Every
CRYPTO-BOX has a microcontroller, which
provides secure access to the contents of its
memory and has the ability to encrypt
programs and data. It can also hold any kind
of sensitive information, like access codes,
expiration dates, or license info.

CrypToken®

The CrypToken is a USB token from MARX
which can be used as secure storage of
certificates used as part of two-factor
authentication systems. It offers integration
into PKCS#11 and MS CAPI based
applications. The CrypToken M2048 is based
on MULTOS Operating System, the
CrypToken MX2048 on JavaCard.

Device Driver
Software component that extends the
operating system of a computer so that
devices like the CRYPTO-BOX can be
accessed.

Digital Signature
A digital signature is an electronic equivalent
of an individual's signature. It authenticates
the message to which it is attached and
validates the authenticity of the sender. In
addition, it provides confirmation that the
contents of the message to which it is
attached have not been tampered with.

DO API (DataObjects API)

This API is implemented on top of the
→CBIOS API and provides convenient
access to licensing data stored in the
CRYPTO-BOX memory partitions for the
purpose of license control. Such data objects
can be: Expiration date or -time, counters,
customer specific objects in memory, such
as licensing information or encryption keys
for AES and RSA encryption (CRYPTO-BOX
SC only). See chapter 14 for more
information.

Dummy Call
A →Function Call which drives the intruder
into believing that this is a task-critical call.
Dummy calls are useful for misleading
potential pirates and crackers.

Encryption
A way to represent data in a ciphered form to
prevent unauthorized access to it by an
intruder.

ESD
Electronic Software Distribution is supported
by the CRYPTO-BOX system.

Expiration Date
Date after which a protected application
cannot be launched anymore.

Function Call
A definition of an application programming
interface (→API) call, its parameters and
return value (if any). After the call is
executed, the control is passed back to the
calling process.

Hardware Key
See "CRYPTO-BOX".

Hash-function
A Hash-function compresses data in a
special way, which is irreversible. It can be
used to create an electronic counterpart of a
password or fingerprint, which can be
transmitted over an unsecured pathway
without having fear of spying/hacking.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

http://www.marx.com/

21. Appendix D: Glossary 134

Hexadecimal values
A value based on the number 16. Example:
the number 32 is represented by hex 20

Kernel
The essential part of an operating system,
responsible for resource allocation, low-level
hardware interfaces, security, etc.

Licensing
Granting permission to use intellectual
property on a software product marketed by
the licensee in exchange for payment.

MARX Analyzer
This diagnostic tool for troubleshooting
CRYPTO-BOX hardware and software
components at the end-user side. See
chapter 9.1 for more information.

MPI
Legacy programmers interface for the
CRYPTO-BOX, supports USB, parallel and
serial devices. Replaced by →Smarx®OS.

Multitasking
The concurrent operation by one central
processing unit of two or more processes.

Mutex
A mutex is a program object that allows
multiple program threads to share the same
resource, such as CRYPTO-BOX access.

.NET Technology
Software framework developed by Microsoft.
It includes a large class library (FCL) and
provides language interoperability (each
language can use code written in other
languages) across several programming
languages. Programs written for .NET
Framework execute in a software
environment (as contrasted to hardware
environment), known as Common Language
Runtime (CLR), an application virtual
machine that provides services such as
security, memory management, and

exception handling. FCL and CLR together
constitute .NET Framework.
MARX provides 2 interfaces designed
especially for .NET developers:
→Smarx4NET and →CBIOS4NET.

Network License Management
A system used to define and control the total
number of concurrent users in a LAN. See
chapter 5 for more information.

Obfuscation
Methods used to make analysis of the
protected software difficult for hackers.
Refer to chapter 17 in this manual for more
information and hints about secure
implementation of the CRYPTO-BOX.

Pay-per-Use
In the internet (Netflix, Amazon Prime) it's
already commonplace: If customers want to
see a particular movie or series, they have to
pay for it. The same can apply to software
distribution. Rather than paying for the
application, the customer pays for the
number of program starts, for the amount of
time the software is used or for the engaged
functionality. In short: Intensive end-users
pay more.

Piracy
Unauthorized duplication, use and
distribution of computer software and/or
related material.

PKI
Public Key Infrastructure defines the rules
and organizational background that enables
deployment of encryption-based security
services.

RFP API (Remote Update API)
Remote Update provides a convenient way of
remotely updating →data objects with
licensing information stored in the
CRYPTO-BOX memory directly on the end-
user side. The RFP API allows seamless

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

21. Appendix D: Glossary 135

integration of remote update into the source
code of your application. This allows to have
full control over the update procedure.

PPK (Professional Protection Kit)
Development Kit for the CRYPTO-BOX,
contains all necessary components and tools
for CRYPTO-BOX implementation – either via
→AutoCrypt or Implementation with →API.
The →Smarx Application Framework (SxAF)
is one of its main components.

RUMS (Remote Update Management
System)
RUMS provides a convenient way of remotely
updating →data objects with licensing
information stored in the CRYPTO-BOX
memory directly on the end-user side without
programming efforts (in contrast to the
→RFP API). See chapter 6.1 for more
information.

RSA
Most widely deployed public-key algorithm.
The CRYPTO-BOX SC supports RSA on
hardware level, the CRYPTO-BOX XS and
Versa models support RSA on driver level.

Smarx®API
High level →API for software developers for
CRYPTO-BOX integration into the application
→Source Code. In contrast to other
→Smarx®OS interfaces, Smarx API exposes
simple and user friendly programming
interface, significantly reducing
implementation efforts compared to other
CRYPTO-BOX interfaces. See chapter 11 for
details.

Smarx Application Framework (SxAF)
SxAF is the central management software for
the CRYPTO-BOX. It automates software
protection and licensing and offers the
following options:
• →AutoCrypt – define projects for

automatic protection Windows
executables and DLLs

• Implementation with →API – manage
licensing information in the CRYPTO-BOX

• Document Protection – protection and
licensing of documents

• Media Protection – protection and
licensing of various media file formats

• CB Format – configure CRYPTO-BOX units
for the tasks mentioned above

• →RUMS – update licensing information in
the end-user's CRYPTO-BOX

• End-User Management – assign
CRYPTO-BOX units to end-users

• Export project settings for usage with
→SmrxProg command line tool

See chapter 4 for more information on SxAF.

Smarx®OS
Smarx OS is an "operating system" specially
tailored to the features of the CRYPTO-BOX
SC/XS/Versa. It allows several applications to
access concurrently and independently on a
single CRYPTO-BOX. This is achieved
through intelligent file management and a
sophisticated programming interface (e.g.
→CBIOS API , →Smarx®API, →CBIOS4NET).

Smarx4NET
Object oriented component based →API
interface for .NET developers which
combines multiple →Smarx®OS interfaces for
the CRYPTO-BOX: →CBIOS API (network
mode only), →DO API and →RFP API. In
contrast to →CBIOS4NET it does not support
direct (local) CRYPTO-BOX access, but it is
fully managed code and does not require VC
redistributables or platform specific
assemblies (32 or 64bit). See chapter
10.13.2 for more details.

SmrxProg
Command line based tool for CRYPTO-BOX
configuration (create/update delete
partitions, programming →data objects with
licensing information, programming
encryption keys, setting the CRYPTO-BOX
label). SmrxProg is available for Windows,
Linux and macOS. See chapter 7.4 for more
information.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

21. Appendix D: Glossary 136

Source Code
The form in which a computer program is
written by the programmer. A compiler or an
interpreter must translate the source code
into the object code for a particular
computer before the code can be executed.

USB Port
Universal Serial Bus, provides much higher
data transfer rates than a serial or parallel
port and allows up to 127 devices to be
attached.

USB device server
USB device servers make USB devices
available to computers in the network. For
the client computer it looks like the USB

device is connected directly to the computer.
This solution is ideal in cases where the USB
device cannot be connected directly to the
client computer (for example virtualized
environments and server-based computing).
Recommendations for USB device servers
supported by the CRYPTO-BOX can be
obtained from MARX on request.

Wrapper
Code which is combined with another piece
of code to determine how that code is
executed. A wrapper can be used for
compatibility or security reasons (e.g. to
prevent the calling program from executing
certain functions). Realized in →AutoCrypt.
The Wrapper within AutoCrypt also provides
compression (similar to Zip).

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

22. Appendix E: Trademarks 137

22. Appendix E: Trademarks
MARX®, CRYPTO-BOX®, CrypToken®, LCS®, CRYPTO-WIZARD®, CRYPT:ACCESS®,
FILE:CRYPT®, CD-ROM VENDOR SECURITY® and TOKEY™ are trademarks or registered
trademarks of MARX.

Microsoft®, Windows®, Windows Server™ and Visual Studio® are registered trademarks of
Microsoft Corporation in the United States and other countries.

Java is a trademark or registered trademark of Oracle and/or its affiliates in the United States
and other countries.

UNIX® is a registered trademark in the United States, other countries, or both and is licensed
exclusively through X/Open Company Limited.

The term "Linux" is a registered trademark of Linus Torvalds.

Mac and macOS are trademarks of Apple Inc., registered in the U.S. and other countries.

Other names may be trademarks of their respective owners.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

23. Appendix F: License Agreement 138

23. Appendix F: License Agreement
1. General. The software, firmware embedded in chips, documentation, evaluation kits and any media accompanying this
License whether on disk, in read only memory, on any other media or in any other form (collectively the “PRODUCT”) are
licensed, not sold, to you by MARX® CryptoTech LP (short: “MARX”) for use only under terms of this License, and MARX reserves
all rights not expressly granted to you. The rights granted herein are limited to MARX's intellectual property rights in the MARX
Software and do not include any other patents or intellectual property rights. You own the media on which the MARX software is
recorded but MARX's licensor(s) retain ownership of the software and product itself.

2. Permitted License, Uses and Restrictions. This License allows you to install and use one (1) copy of the software on a single
device or computer at a time. This License does not allow the software to exist on more than one such device or computer at a
time, and you may not make the software available over a network where it could be used by multiple devices or multiple
computers at the same time.
You may make one copy of the software in machine-readable form for backup purposes only; provided that the backup copy
must include all copyright or other proprietary notices contained on the original.
If MARX HARDWARE, eg. CRYPTO-BOX® or CrypToken® security devices, is purchased, you, as a retailer or distributor, may NOT
remove any product names or copyright marks, or alter casings in any way without written permission.
Except as and only to the extent expressly permitted in this License or by applicable law, you may not copy, decompile, reverse
engineer, disassemble, attempt to derive the source code of, modify, or create derivative works of the software or product or any
part thereof. Any attempt to do so is a violation of the rights of MARX and its licensors of the software or product. If you breach
this restriction, you may be subject to prosecution and you are always liable for all damages, including consequential damages.
The same applies if attempts are made to disassemble, analyze or reverse engineer any security hardware obtained from MARX.

MARX SOFTWARE AND ALL MARX PRODUCTS IN GENERAL ARE NOT INTENDED FOR USE IN WHICH THE FAILURE OF THE
SOFTWARE OR PRODUCT COULD LEAD TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRONMENTAL
DAMAGE.

3. Transfer. You may not rent, lease, lend or sublicense the software. You may, however, make a one-time permanent transfer of
all of your individual license rights to the software to another party, provided that: (a) the transfer must include all of the software,
including all its component parts, original media, printed materials and this License; (b) you do not retain any copies of the
software, full or partial, including copies stored on a computer or other storage device; and (c) the party receiving the software
reads and agrees to accept the terms and conditions of this License.

4. Termination. This License is effective until terminated. Your rights under this License will terminate automatically without
notice from MARX if you fail to comply with any term(s) of this License. Upon the termination of this License, you shall cease all
use of the MARX software and destroy all copies, full or partial, of the MARX software.

5. Limited Warranty. MARX warrants the media on which the software is recorded and delivered by MARX to be free from
defects in materials and workmanship under normal use for a period of ninety (90) days from the date of original retail purchase.
Your exclusive remedy under this section shall be, at MARX's option, either a refund of the purchase price of the product
containing the software or replacement of the software or product which is returned to MARX. Any replaced products or parts
shall become MARX's property.
THIS LIMITED WARRANTY AND ANY IMPLIED WARRANTIES ON THE MEDIA INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO
NINETY (90) DAYS FROM THE DATE OF ORIGINAL RETAIL PURCHASE. SOME JURISDICTIONS DO NOT ALLOW LIMITATION
ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATION MAY NOT APPLY TO YOU. THE LIMITED
WARRANTY SET FORTH HEREIN IS THE ONLY WARRANTY MADE TO YOU AND IS PROVIDED IN LIEU OF ANY OTHER
WARRANTIES (IF ANY) CREATED BY ANY DOCUMENTATION OR PACKAGING, THIS LIMITED WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY BY JURISDICTION.
Warranty claims must be made in writing during the warranty period. The documentation must contain a description of the defect
and include sufficient proof for the defect detected in a MARX Product.
MARX is NOT responsible for any delays in delivery.

6. Disclaimer of Warranties. YOU EXPRESSLY ACKNOWLEDGE AND AGREE THAT USE OF THE SOFTWARE IS AT YOUR OWN
RISK AND THAT THE ENTIRE RISK AS TO SATISFACTORY QUALITY, PERFORMANCE, ACCURACY MEDIA SET FORTH ABOVE
AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE SOFTWARE OR PRODUCT IS PROVIDED “AS IS”,
WITH ALL FAULTS AND WITHOUT WARRANTY OF ANY KIND, AND DANGER AND DANGER'S LICENSORS (COLLECTIVELY
REFERRED TO AS “DANGER” FOR THE PURPOSES OF SECTIONS 6 AND 7) HEREBY DISCLAIM ALL WARRANTIES AND
CONDITIONS WITH RESPECT TO THE SOFTWARE, EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES AND/OR CONDITIONS OF MERCHANTABILITY, OF SATISFACTORY QUALITY, OF
FITNESS FOR A PARTICULAR PURPOSE, OF ACCURACY, OF QUIET ENJOYMENT, AND NON-INFRINGEMENT OF THIRD
PARTY RIGHTS. DANGER DOES NOT WARRANT AGAINST INTERFERENCE WITH YOUR ENJOYMENT OF THE SOFTWARE,
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS, THAT THE OPERATION OF THE
SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE SOFTWARE WILL BE CORRECTED. NO

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

23. Appendix F: License Agreement 139

ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY DANGER SHALL CREATE A WARRANTY. SHOULD THE SOFTWARE
PROVE DEFECTIVE, YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES OR LIMITATIONS ON APPLICABLE STATUTORY
RIGHTS OF A CONSUMER, SO THE ABOVE EXCLUSION AND LIMITATIONS MAY NOT APPLY TO YOU.

7. Limitation of Liability. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT SHALL DANGER BE LIABLE FOR
PERSONAL INJURY, OR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, LOSS OF DATA, BUSINESS INTERRUPTION OR ANY OTHER
COMMERCIAL DAMAGES OR LOSSES, ARISING OUT OF OR RELATED TO YOUR USE OR INABILITY TO USE THE SOFTWARE,
HOWEVER CAUSED, REGARDLESS OF THE THEORY OF LIABILITY (CONTRACT, TORT OR OTHERWISE) AND EVEN IF DANGER
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF
LIABILITY FOR PERSONAL INJURY, OR OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THIS LIMITATION MAY NOT
APPLY TO YOU. In no event shall MARX's total liability to you for all damages (other than as may be required by applicable law in
cases involving personal injury) exceed the amount of fifty dollars ($50.00). The foregoing limitations will apply even if the above
stated remedy fails of its essential purpose.
In no event MARX will be liable for any claims by you based on any third-party claim.

8. Export Law Assurances. You may not use or otherwise export or reexport the software or product except as authorized by
United States law and the laws of the jurisdiction in which the software and hardware was obtained. In particular, but without
limitation, the software and hardware may not be exported or re-exported (a) into (or to a national or resident of) any U.S.
embargoed countries (currently Cuba, Iran, Iraq, Libya, North Korea, Sudan and Syria) or (b) to anyone on the U.S. Treasure
Department's list of Specially Designated Nationals or the U.S. Department of Commerce Denied Person's List or Entity List. By
using the software and hardware, you represent and warrant that you are not located in, under control of, or a national or resident
of any such country or on any such list.

9. Government End Users. The software and related documentation are “Commercial Items”, as that term is defined at 48
C.F.R. §2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation”, as such
terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R.
§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software
Documentation are being licensed to U.S. government end users (a) only as Commercial Items and (b) with only those rights as
the granted to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright
laws of the United States.

10. Controlling Law and Severability and Choice of Forum. This License will be governed by and construed in accordance with
the laws of the State of Georgia, as applied to agreements entered into and to be performed entirely within Georgia between
Georgia residents, that is, without giving any effect to the choice of laws provisions of the State of Georgia. This License shall not
be governed by the United Nations Convention on Contracts for the International Sale of Goods, the application of which is
expressly excluded. If for any reason a court of competent jurisdiction finds any provision, or portion thereof, to be
unenforceable, the remainder of this License shall continue in full force and effect. You agree that the only courts in which You
will bring lawsuits concerning the application or enforcement of this License are courts of competent jurisdiction located in the
State of Georgia and you consent to the exercise of jurisdiction by any such court. This paragraph shall survive in full force and
effect regardless of any termination of this License.

11. Complete Agreement; Governing Language, Place of Jurisdiction
This License constitutes the entire agreement between the parties with respect to the software licensed hereunder and
supersedes all prior or contemporaneous understandings regarding such subject matter. No amendment to or modification of
this License will be binding unless in writing and signed by MARX.
Place of jurisdiction is Atlanta, Georgia, U.S.A.
However, MARX may file any claims at other locations at MARX' sole discretion.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

24. Appendix G: Notice to Users 140

24. Appendix G: Notice to Users

24.1. General Information
All attempts have been made to make the information in this document complete and
accurate. MARX is not responsible for any direct or indirect damage or loss of business
resulting from inaccuracies and omissions. The specifications contained in this document are
subject to change without notice.

All product and company names used in this document are trademarks or registered
trademarks of their respective holders.

24.2. Electrostatic Discharge (ESD) Precautions
MARX hardware was designed to resist high levels of electro-static discharge (ESD); however,
extreme levels of ESD may cause damage. For example, when walking on a synthetic carpet
(especially on dry days), a person can generate enough static electricity to cause a spark
while touching a metal object. Use the following precautions to protect MARX devices from
ESD:

• Keep the MARX hardware in anti-static bags until ready for use.

• Touch a grounded metal object before touching the MARX device.

• Avoid touching the contact pins.

24.3. Further Handling Precautions for MARX Hardware
In order to avoid damage to MARX devices or to the information written in their internal
memory, please observe the following precautions when handling them:

• Do not exceed the temperature range specified in the data sheet of the device model you
are using.

• Do not leave the device in places that are extremely humid for a longer time

• Do not remove the MARX device from the USB port while an application is accessing it to
avoid data loss or corruption of the internal memory. Exit the application or shut down the
computer before removing it.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

25. Appendix H: Declaration of Conformity Statements 141

25. Appendix H: Declaration of Conformity Statements
All the Declaration of Conformity statements related to this product can be found at
www.marx.com About Regulatory Compliance→ →

MARX devices generate, use and can radiate radio frequency energy. If not installed and
used in accordance with the instructions, they may cause interference to radio
communications. MARX devices have been tested and found to be harmless for residential
electrical installations. However, we cannot guarantee that interference with radio
communications will not occur in a particular installation.

If you hear or see interference with radio or TV reception that you think may be caused by a
MARX device, determine whether the interference comes from the device by connecting it to
your computer and disconnecting it again. We encourage you to try to correct the interference
using one of the following measures:

• Relocate or re-orient the radio/TV antenna.

• Locate the computer and the receiver in different rooms.

• Plug the computer and the receiver into different electrical outlets.

• Consult a radio/TV technician for help.

Operation with unshielded cables is likely to result in interference of radio and reception. The
user is cautioned that modifications and changes made to a MARX device without the
manufacturer's approval could void the authority to operate this device.

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

https://www.marx.com/en/about-marx/regulatory-compliance

26. Alphabetical Index 142

26. Alphabetical Index

A
AC_Tool.exe, 38, 50
Access Codes, 12, 132
Activation, 100
Activation Code, 106
ActiveX, 111
AES encryption, 10, 61, 64, 91
AES/Rijndael, 64

Algorithm, 11, 118
CBC mode, 11
OFB mode, 11

Android, 79
Anti-debug protection, 122-124
Anti-disassembling, 122, 125
API, 132
API Implementation, 14
Application Framework, 22
Arguments, 119
ASP.NET, 44
Authentication, 118, 132
AutoCrypt, 13, 23, 132
AutoCrypt command line, 23, 50
AutoCrypt SxAF, 23
AutoCrypt Wizard, 8, 23
Automated Online Updates, 43
Automatic Protection, 13
Automatic software protection, 23

B
Backup SxAF database, 22
Barcode, 130
Beta Test Program, 129
Binary shell, 132
Binding, 100
Binding reset, 100
Binding to local PC, 29
Borland C++, 73

C
C/C++, 59, 70
C#, 59, 71
C++ Builder, 59, 73
CAPI, 133
CB Format, 38

CBIOS API, 59, 60, 69, 84
CBIOS_CBU2_DecryptRSA, 91
CBIOS_CBU2_EncryptRSA, 91
CBIOS_CBU2_GetKeyInfoAES, 91
CBIOS_CBU2_LockKeyAES, 91
CBIOS_CBU2_SetKeyAES, 91
CBIOS_CBU2_SetKeyInfoAES, 91
CBIOS_CBU2_SetKeyRSA, 91
CBIOS_Close, 103
CBIOS_CryptFixed, 91
CBIOS_CryptPrivate, 27, 91
CBIOS_CryptSession, 27, 91
CBIOS_DecryptRSA, 91
CBIOS_DecryptRSAEx, 91
CBIOS_EncryptRSA, 91
CBIOS_EncryptRSAEx, 91
CBIOS_GenerateKeyPairRSA, 91
CBIOS_GenerateKeyPairRSAEx, 91
CBIOS_GetBoxInfo, 110
CBIOS_GetBoxInfoAdvI, 26
CBIOS_GetHWRand, 90
CBIOS_GetKeyRSA, 91
CBIOS_IsBoxLockedByOthersI, 89
CBIOS_LockBox, 89
CBIOS_LockBoxEx, 89
CBIOS_LockLicense, 92
CBIOS_Logout, 103
CBIOS_MD5Hash, 94
CBIOS_OpenByApp, 103
CBIOS_OpenByIndex, 110
CBIOS_PrepareRSAKey, 91
CBIOS_ReadRAM1, 90
CBIOS_ReadRAM2, 90
CBIOS_ReadRAM3, 90
CBIOS_ReleaseLicense, 92
CBIOS_ScanBoxes, 110
CBIOS_SetIVPrivate, 73, 91
CBIOS_SetIVSession, 73, 91
CBIOS_SetKeyPrivate, 73, 91
CBIOS_SetKeyRSA, 91
CBIOS_SetKeySession, 73, 91
CBIOS_SetUPW, 91
CBIOS_UnlockBox, 89
CBIOS_UPWLogin, 103

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

26. Alphabetical Index 143

CBIOS_WriteRAM1, 90
CBIOS_WriteRAM2, 90
CBIOS_WriteRAM3, 91
CBIOS4NET, 70, 71, 132
CBUSetup, 132
CDO, 95
Checksum, 119
COBOL, 69
COM technology, 69, 70
Command line utilities, 50
Compilers, 125
Compression, 121, 132
Conformity statements, 141
Contact (distributors), 131
Control Center, 18
Counter, 95, 97
Counters, 133
CRC value, 97
Crypto Data Objects, 95
CRYPTO-BOX, 133
CRYPTO-BOX C, 11
CRYPTO-BOX Format, 38, 52, 133
CRYPTO-BOX Memory, 11
CRYPTO-BOX Memory Zones, 61
CRYPTO-BOX SC, 11, 67, 84
CRYPTO-BOX SC API calls, 91
CRYPTO-BOX Versa, 11
CRYPTO-BOX XS, 11
CrypToken, 133

D
DarkBASIC, 59, 70
Data Matrix Code, 130
Data Object, 24, 30, 105
Data Object Manager, 21
Data Object types, 96
Data Objects, 95
Data Objects map file, 31, 103
Data Objects Update, 105
Data Protection API, 60
Dead counter, 97, 133
Debian, 75
Debug protection, 122-124
Decryption, 91, 121
Deleting existing partitions, 111
Delphi, 59, 73
Developer ID, 12
Developer's Agreement, 138

Device driver, 133
Diagnostic report, 58
Digital Mars D, 59
Digital Signature, 133
Disassembling, 122, 125
Disassembly protection, 122, 124, 125
Distributing your software, 54
Distributors, 131
DLL, 69, 118, 123
DO API, 30, 59, 95
DO API Reference, 104
DOC file protection, 31
Doc_Tool.exe, 38, 51
Document Protection, 31, 51
DP API, 60
Driver, 129
Dummy calls, 120, 133
Dynamic Link Library, 118, 123

E
EAL certification, 11
Eclipse IDE, 79
EEPROM, 11
Electronic Software Distribution (ESD), 133
Embarcadero Delphi, 73
Encryption, 91, 118, 119, 126, 133
Encryption key, 119
End-user Installation, 54
End-User Management, 39
End-user support, 129
ESD precautions, 140
Evaluation period, 105
Execution Counter, 28, 97, 133
Expiration Date, 28, 95, 105, 133
Expiration Date (fixed), 96
Expiration Date (relative), 96
Expiration Date & Time, 28
Expiration Days, 28
Expiration Time, 28
Extended Smarx OS API, 111
Extended API Calls, 111
Extended Smarx OS API, 60

F
F#, 59
flash drive, 11
Floating License, 29
Format the CRYPTO-BOX, 39, 52

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

26. Alphabetical Index 144

Formatting the CRYPTO-BOX, 111
Fortran, 59
Function call, 119, 133

G
GCC (Linux), 76
Geo-Licensing, 100
Geo-location, 100

H
Hardware key, 133
Hardware profile, 25, 33, 40
Hash value, 97
Hexadecimal values, 134

I
Identifier, 123
IIS, 44
Implementation with API, 14
Installation (PPK), 18
Internet, 122
iOS, 79

J
Java, 70
Java (Linux), 76
Java (Mac OS), 78
Java (Windows), 74
JSP, 44
Just-in-time delivery, 129

K
Kernel, 134
Kernel driver, 77

L
LabVIEW, 8, 59, 70
libcbios.a (Linux), 76
libCBIOS.a (Mac OS), 78
libCBIOS.a (Windows), 75, 76, 79
License Agreement, 138
Linux, 19, 75

M
macOS, 19, 77
MARX Analyzer, 56, 134
MARX components, 58
MATLAB, 59
MD4/5-Algorithm, 118

MD5 Hash, 94
Memory, 96
Memory Object, 29, 97
Microsoft .NET, 71
MinGW, 75
MPI, 61, 63
MPI Programmers Interface, 134
MPI to Smarx OS conversion, 61
MULTOS Operating System, 133

N
NET Core, 71, 73
NET environment, 71, 134
Network CBIOS API, 94
Network diagnostic, 56
Network License, 29, 97, 98
Network License Management, 15, 134
Network Server, 94
Network Server Installation, 54

O
Obfuscation, 127
OEM, 129
OLM, 43
OLM demo, 46
Online License Management, 43
Online Licensing, 43, 60
OpenSSL, 68
OpenSUSE, 75

P
Pay-per-use, 15, 134
PDF Protection, 31
PDF Viewer, 31, 37
PHP, 44
PKCS#1 padding, 67, 68
PKI, 134
PPK, 135
Processes, 58
Product Edition, 37
Program execution counter, 133
Python, 84

Q
Qt (Linux), 76
Qt (Mac OS), 79
Qt (Windows), 75

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

26. Alphabetical Index 145

R
RAM (Memory), 90, 91
RAM zones, 61
REALbasic, 59, 70
Remote Update, 16
Remote Update API, 105
Remote Update Management System, 31,
43, 105-107
Remote Updates, 105
RFP API, 59, 60
RFP API functions, 105
Rijndael, 118, 119
Rijndael Fixed key, 64
Rijndael Private key, 64
Rijndael Session key, 27, 64
RSA, 61, 68, 91, 108, 118, 119, 135
RSA algorithm, 11
RSA padding, 68
RTF file protection, 31
RU_Tool.exe, 53
RUMS, 31, 43, 105-107
Run Counter, 28, 97

S
Scala, 59, 70
Seminar, 129
Serial number, 12
Session Key, 91, 119
Smarx API, 8, 59, 80, 135
Smarx API License File, 31, 80
Smarx Cloud Security, 43, 60
Smarx OS, 21
Smarx4NET, 70, 71, 135
SmarxCPP, 69
SmrxProg for Linux, 19
SmrxProg.exe, 38, 52
SmrxProg.exe, 111
Support, 129
Swift, 59
SxAF, 135
SxAF Database, 22

T
Technical data, 11, 128
Technical support, 58, 129
TEOSDO_AES, 67, 98
TEOSDO_AES_EX, 99
TEOSDO_AES_FIXED, 98

TEOSDO_AES_PRIVATE, 98
TEOSDO_AES_SESSION, 99
TEOSDO_APP_CS, 97
TEOSDO_APP_NAME_HASH, 97
TEOSDO_BINDING, 100
TEOSDO_CDO_APP_CS, 97
TEOSDO_CDO_APP_NAME_HASH, 97
TEOSDO_CDO_BINDING, 100
TEOSDO_CDO_COUNTER, 97
TEOSDO_CDO_EXPIRATION_DATE_AND_T
IME, 96
TEOSDO_CDO_GEOLICENSE, 100
TEOSDO_CDO_MEMORY, 97
TEOSDO_CDO_NUMBER_OF_DAYS, 96
TEOSDO_CDO_PSW_HASH, 97
TEOSDO_CDO_TIME_ALLOWED, 97
TEOSDO_COUNTER, 97
TEOSDO_DOUBLE_WORD, 97
TEOSDO_EXPIRATION_DATE, 96
TEOSDO_EXPIRATION_DATE_AND_TIME,
96
TEOSDO_GEOLICENSE, 100
TEOSDO_MEMORY, 97
TEOSDO_NET_License, 97
TEOSDO_NET_License_Ex, 97
TEOSDO_NUMBER_OF_DAYS, 96
TEOSDO_PSW_HASH, 97
TEOSDO_RSA, 68, 98
TEOSDO_RSA_CLIENT, 98
TEOSDO_RSA_DISTRIBUTOR, 98
TEOSDO_RSA_EX, 98
TEOSDO_SIGNATURE, 99
TEOSDO_TIME_ALLOWED, 97
Terminal Server, 92
Trademarks, 137
Training for developers, 129
Troubleshooting, 56
TRX file, 25, 33, 40, 56
Two-Factor Authentication, 133
TXT file protection, 31

U
Ubuntu, 75
Update of drivers, 129
Updates of protected applications, 105-107
Updating the CRYPTO-BOX, 43, 105
Usage Counter, 28, 95
USB device server, 136

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

26. Alphabetical Index 146

USB events, 63

V
VBA, 59
Visual Basic, 59, 73
Visual Studio, 59
VPN, 133

W
WEB API, 43, 60, 132
Web Authentication, 60
Web-based Update Service, 60
Windows Terminal Server, 92
Wrapper, 136

X
XCode, 59, 77, 79
XML script, 13

XML script generation, 38
XSMRX API, 111
XSMRX::AddApp, 115
XSMRX::Clear, 113
XSMRX::ErrorToText, 117
XSMRX::FormatBox, 116
XSMRX::GetAppRec, 114
XSMRX::GetAppRecByIndex, 114
XSMRX::GetAvailableRAMSize, 115
XSMRX::GetBoxInfo, 114
XSMRX::GetBoxLabel, 114
XSMRX::ReadBox, 113
XSMRX::RemoveApp, 115
XSMRX::SetAPW, 116
XSMRX::SetBoxLabel, 115
XSMRX::SetUPW, 116
XSMRXCOM ActiveX, 111

0-30Aug024ks(Compendium).odm

Smarx OS Compendium August 2024 Copyright © 2002, 2024 MARX® CryptoTech LP

0-
27
no
v1
2s
a(
Sm
ar
xM
an
_B
ac
k-
C
ov
er
).
ps
d

MARX CryptoTech LP
489 South Hill Street
Buford, GA 30518, U.S.A.
 +1-770-904-0369
support@marx.com
www.marx.com

MARX Software Security GmbH
Vohburger Strasse 68
D-85104 Wackerstein
 +49 (0) 8403-9295-0
support-de@marx.com
www.marx.com

Software Security

Establish secure distribution channels and assure revenue
for every license. Includes automatic protection for Windows
(with support for Win64 and .NET applications) and implementation
with API for Windows, Linux, macOS and Android.

Media Protection

Protection of digital media (video and audio) from piracy and
unauthorized duplication with the CRYPTO-BOX.
Incorporate DRM features into your media files and secure your
digital assets!

Online License Management and Smarx Cloud Security

Automated online updates for the CRYPTO-BOX. Extend or renew
licenses remotely 24/7. Restrict and allow login into your web site
or subscription service or any kind of online business.

Document Protection

Secure distribution of documents. Protect your valuable digital
content with the CRYPTO-BOX and limit access to authorized users.
Ideal for distribution via Internet. Licenses can be updated remotely
(Digital Rights Management).

Unique Benefits of the

• Common Criteria EAL4+ certified SmartCard chip.
• Hardware-based AES and RSA encryption with support for multiple
 encryption keys in one CRYPTO-BOX.
• Very fast memory access, probably the fastest token on the market.
• Extremely short and robust metal case: shields electronic circuitry
 perfectly!
• Supports Windows, Linux, macOS and Android.
• Customer specific versions and customized casing available.

	1. What is this Compendium About?
	1.1. Introduction
	1.2. What is New?
	1.3. What to Find Where in this Compendium
	1.4. Professional Software Protection Secures Revenue
	The CRYPTO-BOX – Your Guide in Insecure Markets
	The CRYPTO-BOX System Offers the Following Advantages:

	1.5. The CRYPTO-BOX®Hardware
	1.5.1. CRYPTO-BOX Models
	1.5.2. Technical Features of the CRYPTO-BOX®

	2. Protection and Licensing Options
	2.1. Overview
	2.2. Automatic Protection and Implementation With API
	2.3. Benefits of the Smarx®OS Application Framework
	2.4. Automatic Protection With AutoCrypt
	2.5. Implementation Into Source Code with API
	2.6. Software and Data Licensing
	2.7. Network License Management
	2.8. Maintenance of Protected Applications Using Remote Update

	3. Starting with the Professional Protection Kit (PPK)
	3.1. Installation
	3.1.1. Windows
	3.1.2. Linux
	3.1.3. macOS

	3.2. How to Start

	4. Smarx®OS Application Framework
	4.1. Overview
	4.2. Steps and Processes of Software/Document Protection
	4.3. Smarx®OS Application Framework – First Start
	4.4. Automatic Software Protection with AutoCrypt
	4.4.1. Overview
	4.4.2. AutoCrypt Wizard, AutoCrypt SxAF, AutoCrypt Command Line

	4.5. Using Smarx®OS Application Framework for API Implementation
	4.5.1. Steps for Protecting Applications with API
	4.5.2. Creating, Deleting and Selecting projects
	4.5.3. General Project Settings
	4.5.4. Adding Partitions to the Project
	4.5.5. Defining Data Objects
	4.5.6. Export of Data Objects Map and Smarx®API License File

	4.6. Document Protection
	4.6.1. Steps for Protecting Digital Documents
	4.6.2. Creating a New Project or Selecting Existing Projects
	4.6.3. General Project Settings
	4.6.4. Creating a Document Group
	4.6.5. Adding Documents to the Group
	4.6.6. Protect Documents
	4.6.7. PDF Viewer

	4.7. Product Editions
	4.8. Generating XML Script for Use with Command Line Tools
	4.9. CRYPTO-BOX®Format: Configuring and Programming
	4.9.1. Selecting Projects to Format
	4.9.2. Formatting CRYPTO-BOX Modules
	4.9.3. Creating Remote Update Utility

	4.10. End-User Management

	5. Network License Management
	5.1. Introduction

	6. Updating Licenses Remotely
	6.1. Remote Update Management System - RUMS
	6.2. Online License Management - OLM
	6.2.1. Introduction
	6.2.2. How Does it Work ?
	6.2.3. Client-Side Requirements
	6.2.4. Server-Side Requirements
	6.2.5. License Update Scripts Generation
	6.2.6. OLM Evaluation Demo

	7. Command Line Utilities
	7.1. Introduction
	7.2. AutoCrypt - Command Line Version
	7.3. Document Protection - Command Line Version
	7.4. SmrxProg - Command Line Based CRYPTO-BOX Formatting
	7.5. RU_Tool - Command Line Utility for Remote Update Management
	7.5.1. Overview

	8. Distributing Your Software
	8.1. Installing CRYPTO-BOX Support on the Target System
	8.2. CRYPTO-BOX Network Server Installation
	8.3. Document Protection PDF Viewer Installation
	8.4. Smarx Cloud Security and OLM Client Component

	9. Troubleshooting with MARX® Analyzer
	9.1. Introduction
	9.2. Features
	9.3. Using MARX® Analyzer
	9.3.1. Standard or Extended Diagnostic (Hardware Profile required)
	9.3.2. Network Diagnostic
	9.3.3. Diagnostics Results
	System Information
	MARX® Hardware
	Networking
	Products and Components
	Running Processes

	9.3.4. Report Generation
	Refresh Diagnostics
	Load Report
	Save Report
	Send Report
	Report Preview
	Print Report

	10. Smarx®OS API for Developers
	10.1. Overview
	10.2. Sharing CRYPTO-BOX® Memory Between Different Applications
	10.3. Access to One CRYPTO-BOX for Different Processes/Threads
	10.4. Caching CRYPTO-BOX Calls
	10.5. CRYPTO-BOX Plug In/Plug Out Notifications
	10.6. MARX Digital Signature
	10.7. Establishing Secure Communication Channel, Document Submission, Remote Update
	10.8. Symmetric Encryption (AES/Rijndael)
	10.9. Asymmetric (RSA) Encryption
	PKCS#1 Padding Rules
	Padding Rules Used in CBU RSA Implementation

	10.10. CRYPTO-BOX®SC Specific Functions
	10.10.1. Compatibility of CRYPTO-BOX XS/Versa and CRYPTO-BOX SC
	10.10.2. CRYPTO-BOX SC AES Encryption Extension
	10.10.3. Using Hardware Based RSA of the CRYPTO-BOX SC

	10.11. Smarx®OS API: Local and Network Modes
	10.12. Using Smarx®OS Under Different Platforms
	10.12.1. Overview
	10.12.2. Table of available Smarx®OS Libraries

	10.13. Supported Environments: Windows
	10.13.1. Microsoft Visual C/C++ 6.x and up
	10.13.2. Microsoft .NET Platform
	10.13.3. Microsoft Visual Basic 6.x
	10.13.4. Borland C/C++ CBuilder 5,6, BDS 2006, RAD Studio 2007 and up
	10.13.5. Embarcadero Delphi 5 and up
	10.13.6. Java (Sun JDK 1.6 and up)
	10.13.7. Qt/MinGW

	10.14. Supported Environments: Linux
	10.14.1. Installing CRYPTO-BOX Support Under Linux
	10.14.2. GCC
	10.14.3. Qt
	10.14.4. Java (Sun JDK 1.6)

	10.15. Supported Environments: macOS
	10.15.1. macOS CBIOS Framework
	10.15.2. macOS CBIOS Static Library
	10.15.3. Java (Sun JDK 1.6 and Higher)
	10.15.4. Qt

	10.16. Supported Environments: iOS
	10.17. Supported Environments: Android

	11. Smarx®API – High Level API for Developers
	11.1. Overview – What is Smarx®API?
	11.2. Smarx®API License File and License ID
	11.3. SmarxLicense class and its common methods
	11.3.1. C# Implementation
	11.3.2. C++ Implementation

	11.4. Smarx®API: Quick Evaluation Scenario

	12. Smarx®OS CBIOS API
	12.1. Overview
	12.2. CBIOS API Main Calls (cbios.h)
	12.2.1. Smarx OS System Brackets
	12.2.2. Using CBIOS from within DLL

	12.3. CRYPTO-BOX Plug In/Out Notifications
	12.4. Getting Information About Attached Hardware
	12.5. Opening the CRYPTO-BOX®
	12.6. Accessing CRYPTO-BOX® Partitions
	12.7. Sharing CRYPTO-BOX Between Different Applications, Lock/Unlock Logic
	Particular Calls and Situations:
	CBIOS_OpenBy###() ... CBIOS_Close()
	CBIOS_LockLicense() ... CBIOS_ReleaseLicense()
	CBIOS_UPWLogin()/CBIOS_APW_Login() ... CBIOS_Logout()
	CBIOS_LockBox ... CBIOS_UnlockBox

	12.8. Attaching/Detaching CRYPTO-BOX
	12.9. Working With the Open CRYPTO-BOX®
	12.9.1. Overview
	12.9.2. Logging Into a CRYPTO-BOX
	12.9.3. Protection Against Terminal Sessions
	12.9.4. Read/Write CRYPTO-BOX Memory
	12.9.5. Using Symmetric Encryption
	12.9.6. Asymmetric RSA Encryption
	12.9.7. MD5 Hash Encryption

	12.10. CBIOS API Description

	13. Smarx®OS Networking: CBIOS on the Network
	13.1. General Issues
	13.2. Network CBIOS API Calls

	14. Smarx®OS DataObjects API
	14.1. Concept: What is Smarx®OS DO API? Why DataObjects?
	14.2. Smarx®OS DataObject Types
	14.2.1. Network Binding Support
	14.2.2. File with Hardware Binding Data

	14.3. Set of Data Objects
	14.4. Accessing DataObjects from Applications
	14.5. Creating DataObjects Map: Import/Export
	14.6. Smarx®OS Data Object API Calls

	15. Smarx®OS Remote Update Technology
	15.1. What is Smarx®OS Remote Update API? How Can It Be Used?
	15.2. Brief Description of Remote Update API
	Types, RFP_Free, RFP_GetVersion functions:
	Structure mask may have the following values:
	End-user side functions:
	Advanced functions (working with parameters):
	Software vendor side functions:
	Advanced functionality (working with parameters):

	15.3. How to Initiate Remote Update Request on the End-user Side?
	15.4. How to Generate Remote Update Code on Software Vendor Side
	15.5. How to Activate Remote Update Code on End-User Side
	15.6. Remote Update API Calls

	16. Extended Smarx®OS API Calls – CRYPTO-BOX® Reconfiguration
	16.1. General Issues
	16.2. CRYPTO-BOX Configuration Scenario
	16.3. Extended Smarx®OS API Calls (In Detail)

	17. Professional Software Protection
	17.1. Important Rules for Professional Software Protection
	17.2. Tips for Protection Against Debugging
	17.3. Protection against Disassembling
	17.4. .NET Specific Protection
	17.5. Sample Code

	18. Appendix A: Technical Data
	19. Appendix B: Support & Collaboration with Customers
	20. Appendix C: Distributors
	21. Appendix D: Glossary
	22. Appendix E: Trademarks
	23. Appendix F: License Agreement
	24. Appendix G: Notice to Users
	24.1. General Information
	24.2. Electrostatic Discharge (ESD) Precautions
	24.3. Further Handling Precautions for MARX Hardware

	25. Appendix H: Declaration of Conformity Statements
	26. Alphabetical Index

